ÃÎÑÒ Ð 50779.10-2000
(ÈÑÎ 3534.1-93)
ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ ÑÒÀÍÄÀÐÒ ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ
Ñòàòèñòè÷åñêèå ìåòîäû
ÂÅÐÎßÒÍÎÑÒÜ È ÎÑÍÎÂÛ ÑÒÀÒÈÑÒÈÊÈ
Òåðìèíû è îïðåäåëåíèÿ
ÃÎÑÑÒÀÍÄÀÐÒ ÐÎÑÑÈÈ
Ìîñêâà
ÏÐÅÄÈÑËÎÂÈÅ
1. ÐÀÇÐÀÁÎÒÀÍ È ÂÍÅÑÅÍ Òåõíè÷åñêèì êîìèòåòîì ïî
ñòàíäàðòèçàöèè ÒÊ 125 «Ñòàòèñòè÷åñêèå ìåòîäû â óïðàâëåíèè êà÷åñòâîì ïðîäóêöèè»,
Àêöèîíåðíûì îáùåñòâîì «Íàó÷íî-èññëåäîâàòåëüñêèé
öåíòð êîíòðîëÿ è äèàãíîñòèêè òåõíè÷åñêèõ ñèñòåì» (ÀÎ «ÍÈÖ ÊÄ»).
2. ÏÐÈÍßÒ È ÂÂÅÄÅÍ Â
ÄÅÉÑÒÂÈÅ Ïîñòàíîâëåíèåì Ãîññòàíäàðòà Ðîññèè îò 29 äåêàáðÿ 2000 ã. ¹ 429-ñò.
3. Ðàçäåëû íàñòîÿùåãî
ñòàíäàðòà, çà èñêëþ÷åíèåì ðàçäåëîâ 1a, 1b è ïðèëîæåíèÿ À, ïðåäñòàâëÿþò
ñîáîé àóòåíòè÷íûé òåêñò ìåæäóíàðîäíîãî ñòàíäàðòà ÈÑÎ 3534.1-93 «Ñòàòèñòèêà.
Ñëîâàðü è óñëîâíûå îáîçíà÷åíèÿ. ×àñòü 1. Âåðîÿòíîñòü è îñíîâíûå ñòàòèñòè÷åñêèå
òåðìèíû».
4. ÂÂÅÄÅÍ ÂÏÅÐÂÛÅ.
ÑÎÄÅÐÆÀÍÈÅ
ÂÂÅÄÅÍÈÅ
Óñòàíîâëåííûå â ñòàíäàðòå òåðìèíû ðàñïîëîæåíû â
ñèñòåìàòèçèðîâàííîì ïîðÿäêå è îòðàæàþò ñèñòåìó ïîíÿòèé â îáëàñòè òåîðèè
âåðîÿòíîñòåé è ìàòåìàòè÷åñêîé ñòàòèñòèêè.
Äëÿ êàæäîãî ïîíÿòèÿ óñòàíîâëåí îäèí
ñòàíäàðòèçîâàííûé òåðìèí.
Íåäîïóñòèìûå ê ïðèìåíåíèþ òåðìèíû-ñèíîíèìû
ïðèâåäåíû â êðóãëûõ ñêîáêàõ ïîñëå ñòàíäàðòèçîâàííîãî òåðìèíà è îáîçíà÷åíû
ïîìåòîé «Íäï.».
Òåðìèíû-ñèíîíèìû áåç ïîìåòû «Íäï.» ïðèâåäåíû â
êà÷åñòâå ñïðàâî÷íûõ äàííûõ è íå ÿâëÿþòñÿ ñòàíäàðòèçîâàííûìè.
Çàêëþ÷åííàÿ â êðóãëûå ñêîáêè ÷àñòü òåðìèíà ìîæåò
áûòü îïóùåíà ïðè èñïîëüçîâàíèè òåðìèíà â äîêóìåíòàõ ïî ñòàíäàðòèçàöèè.
Íàëè÷èå êâàäðàòíûõ ñêîáîê â òåðìèíîëîãè÷åñêîé
ñòàòüå îçíà÷àåò, ÷òî â íåå âêëþ÷åíû äâà òåðìèíà, èìåþùèõ îáùèå òåðìèíîýëåìåíòû.
 àëôàâèòíûõ óêàçàòåëÿõ äàííûå òåðìèíû ïðèâåäåíû
îòäåëüíî ñ óêàçàíèåì íîìåðà ñòàòüè.
Ïðèâåäåííûå îïðåäåëåíèÿ ìîæíî ïðè íåîáõîäèìîñòè
èçìåíèòü, ââîäÿ â íèõ ïðîèçâîäíûå ïðèçíàêè, ðàñêðûâàÿ çíà÷åíèÿ èñïîëüçóåìûõ â
íèõ òåðìèíîâ, óêàçûâàÿ îáúåêòû, âõîäÿùèå â îáúåì îïðåäåëÿåìîãî ïîíÿòèÿ.
Èçìåíåíèÿ íå äîëæíû íàðóøàòü îáúåì è ñîäåðæàíèå ïîíÿòèé, îïðåäåëåííûõ â äàííîì
ñòàíäàðòå.
Ñòàíäàðòèçîâàííûå òåðìèíû íàáðàíû ïîëóæèðíûì
øðèôòîì, èõ êðàòêèå ôîðìû, ïðåäñòàâëåííûå àááðåâèàòóðîé, - ñâåòëûì, à ñèíîíèìû
- êóðñèâîì.
 ñòàíäàðòå ïðèâåäåíû èíîÿçû÷íûå ýêâèâàëåíòû
ñòàíäàðòèçîâàííûõ òåðìèíîâ íà àíãëèéñêîì (en) è ôðàíöóçñêîì (fr) ÿçûêàõ.
 íàñòîÿùåì ñòàíäàðòå
ìíîãèå òåðìèíû îïðåäåëåíû îäíîâðåìåííî â ðàçäåëå 1 è â ðàçäåëå 2 â çàâèñèìîñòè îò òîãî,
èìåþò ëè îíè ïðèìåíåíèå:
- òåîðåòè÷åñêîå - â âåðîÿòíîñòíîì ñìûñëå;
- ïðàêòè÷åñêîå - â ñòàòèñòè÷åñêîì ñìûñëå.
Òåðìèíû, îïðåäåëåííûå â ðàçäåëå 1, ñôîðìóëèðîâàíû íà
ÿçûêå ñâîéñòâ ãåíåðàëüíûõ ñîâîêóïíîñòåé. Â ðàçäåëå 2 îïðåäåëåíèÿ îòíåñåíû ê
ìíîæåñòâó íàáëþäåíèé. Ìíîãèå èç íèõ îñíîâàíû íà âûáîðî÷íûõ íàáëþäåíèÿõ èç
íåêîòîðîé ñîâîêóïíîñòè. Äëÿ òîãî ÷òîáû ðàçëè÷àòü ïàðàìåòðû ãåíåðàëüíîé
ñîâîêóïíîñòè è ðåçóëüòàòû âû÷èñëåíèé îöåíîê ïàðàìåòðîâ ïî âûáîðî÷íûì äàííûì, ê
îïðåäåëåíèÿì ðÿäà òåðìèíîâ èç ðàçäåëà 2 äîáàâëåíî ñëîâî «âûáîðî÷íûé» èëè
«ýìïèðè÷åñêèé».
ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ ÑÒÀÍÄÀÐÒ ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ
Ñòàòèñòè÷åñêèå ìåòîäû
ÂÅÐÎßÒÍÎÑÒÜ È ÎÑÍÎÂÛ ÑÒÀÒÈÑÒÈÊÈ
Òåðìèíû è îïðåäåëåíèÿ
Statistical
methods. Probability and general statistical terms. 
Terms and definitions
Äàòà ââåäåíèÿ 2001-07-01
Íàñòîÿùèé ñòàíäàðò óñòàíàâëèâàåò òåðìèíû è
îïðåäåëåíèÿ ïîíÿòèé â îáëàñòè òåîðèè âåðîÿòíîñòåé è ìàòåìàòè÷åñêîé ñòàòèñòèêè.
Òåðìèíû, óñòàíîâëåííûå íàñòîÿùèì ñòàíäàðòîì,
îáÿçàòåëüíû äëÿ ïðèìåíåíèÿ âî âñåõ âèäàõ äîêóìåíòàöèè è ëèòåðàòóðû ïî
ñòàòèñòè÷åñêèì ìåòîäàì, âõîäÿùèõ â ñôåðó ðàáîò ïî ñòàíäàðòèçàöèè è (èëè)
èñïîëüçóþùèõ ðåçóëüòàòû ýòèõ ðàáîò.
 íàñòîÿùåì ñòàíäàðòå èñïîëüçîâàíû ññûëêè íà
ñëåäóþùèå ñòàíäàðòû:
ÃÎÑÒ Ð 50779,11-2000 (ÈÑÎ 3534.2-93)
Ñòàòèñòè÷åñêèå ìåòîäû. Ñòàòèñòè÷åñêîå óïðàâëåíèå êà÷åñòâîì. Òåðìèíû è
îïðåäåëåíèÿ.
ÈÑÎ 31.0-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 0. Îáùèå ïðèíöèïû.
ÈÑÎ 31.1-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 1. Ïðîñòðàíñòâî è âðåìÿ.
ÈÑÎ 31.2-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 2. Ïåðèîäè÷åñêèå ÿâëåíèÿ.
ÈÑÎ 31.3-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 3. Ìåõàíèêà.
ÈÑÎ 31.4-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 4. Òåðìîîáðàáîòêà.
ÈÑÎ 31.5-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 5. Ýëåêòðè÷åñòâî è ìàãíèòíîå èçëó÷åíèå.
ÈÑÎ 31.6-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 6. Ñâåòîâîå è ýëåêòðîìàãíèòíîå èçëó÷åíèå.
ÈÑÎ 31.7-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 7. Àêóñòèêà.
ÈÑÎ 31.8-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 8. Ôèçè÷åñêàÿ õèìèÿ è ìîëåêóëÿðíàÿ ôèçèêà.
ÈÑÎ 31.9-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 9. Àòîìíàÿ è ÿäåðíàÿ ôèçèêà.
ÈÑÎ 31.10-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 10. ßäåðíûå ðåàêöèè è èîíîâîå èçëó÷åíèå.
ÈÑÎ 31.11-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 11. Ìàòåìàòè÷åñêèå çíàêè è ñèìâîëû, èñïîëüçóåìûå â ôèçè÷åñêèõ
íàóêàõ.
ÈÑÎ 31.12-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 12. ×èñëî õàðàêòåðèñòèê.
ÈÑÎ 31.13-921) Âåëè÷èíû è åäèíèöû
èçìåðåíèÿ. ×àñòü 13. Ôèçèêà òâåðäîãî òåëà.
ÈÑÎ 3534.3-851) Ñòàòèñòèêà. Ñëîâàðü è
óñëîâíûå îáîçíà÷åíèÿ. ×àñòü 3. Ïëàíèðîâàíèå ýêñïåðèìåíòîâ.
ÈÑÎ 5725.1-911) Òî÷íîñòü ìåòîäîâ è
ðåçóëüòàòîâ èçìåðåíèé. ×àñòü 1. Îáùèå ïðèíöèïû è îïðåäåëåíèÿ
1)
Îðèãèíàëû ìåæäóíàðîäíûõ ñòàíäàðòîâ ÈÑÎ - âî ÂÍÈÈÊÈ Ãîññòàíäàðòà Ðîññèè.
 
  | 1.1 âåðîÿòíîñòü Äåéñòâèòåëüíîå ÷èñëî â
  èíòåðâàëå îò 0 äî 1, îòíîñÿùååñÿ ê ñëó÷àéíîìó ñîáûòèþ. Ïðèìå÷àíèÿ 1. ×èñëî ìîæåò îòðàæàòü
  îòíîñèòåëüíóþ ÷àñòîòó â ñåðèè íàáëþäåíèé èëè ñòåïåíü óâåðåííîñòè â òîì, ÷òî
  íåêîòîðîå ñîáûòèå ïðîèçîéäåò. Äëÿ âûñîêîé ñòåïåíè óâåðåííîñòè âåðîÿòíîñòü
  áëèçêà ê åäèíèöå. 2. Âåðîÿòíîñòü ñîáûòèÿ À îáîçíà÷àþò Ðr (À) èëè Ð (À) | en probability fr probabilite | 
 
  | 1.2. ñëó÷àéíàÿ
  âåëè÷èíà Ïåðåìåííàÿ, êîòîðàÿ
  ìîæåò ïðèíèìàòü ëþáîå çíà÷åíèå èç çàäàííîãî ìíîæåñòâà çíà÷åíèé è ñ êîòîðîé
  ñâÿçàíî ðàñïðåäåëåíèå âåðîÿòíîñòåé. Ïðèìå÷àíèå - Ñëó÷àéíóþ
  âåëè÷èíó, êîòîðàÿ ìîæåò ïðèíèìàòü òîëüêî îòäåëüíûå çíà÷åíèÿ, íàçûâàþò
  äèñêðåòíîé. Ñëó÷àéíóþ âåëè÷èíó, êîòîðàÿ ìîæåò ïðèíèìàòü ëþáûå çíà÷åíèÿ èç
  êîíå÷íîãî èëè áåñêîíå÷íîãî èíòåðâàëà, íàçûâàþò íåïðåðûâíîé. | en random variable; variate fr variable aleatoire | 
 
  | 1.3. ðàñïðåäåëåíèå
  (âåðîÿòíîñòåé) Ôóíêöèÿ, îïðåäåëÿþùàÿ
  âåðîÿòíîñòü òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà ïðèìåò êàêîå-ëèáî çàäàííîå çíà÷åíèå
  èëè áóäåò ïðèíàäëåæàòü çàäàííîìó ìíîæåñòâó çíà÷åíèé. Ïðèìå÷àíèå - Âåðîÿòíîñòü
  òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà íàõîäèòñÿ â îáëàñòè åå èçìåíåíèÿ, ðàâíà åäèíèöå | en probability
  distribution fr loi de probabilite | 
 
  | 1.4. ôóíêöèÿ
  ðàñïðåäåëåíèÿ Ôóíêöèÿ, çàäàþùàÿ äëÿ
  ëþáîãî çíà÷åíèÿ õ âåðîÿòíîñòü òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà Õ
  ìåíüøå èëè ðàâíà õ, 
 | en distribution function fr fonction de repartition | 
 
  | 1.5. ïëîòíîñòü
  ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé) Ïåðâàÿ ïðîèçâîäíàÿ,
  åñëè îíà ñóùåñòâóåò, ôóíêöèè ðàñïðåäåëåíèÿ íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû 
 Ïðèìå÷àíèå -  íàçûâàåòñÿ
  ýëåìåíòîì âåðîÿòíîñòè 
 | en probability
  density function fr fonction de densite de
  probabilit | 
 
  | 1.6. ôóíêöèÿ
  ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé) ìàññ Ôóíêöèÿ, äàþùàÿ äëÿ
  êàæäîãî çíà÷åíèÿ xi äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû Õ âåðîÿòíîñòü pi òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà
  ðàâíà õi: 
 | en probability
  mass function fr fonction de masse | 
 
  | 1.7. äâóìåðíàÿ ôóíêöèÿ ðàñïðåäåëåíèÿ Ôóíêöèÿ, äàþùàÿ äëÿ ëþáîé ïàðû çíà÷åíèé õ,
  ó âåðîÿòíîñòü òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà X áóäåò
  ìåíüøå èëè ðàâíà õ, à ñëó÷àéíàÿ âåëè÷èíà Y - ìåíüøå
  èëè ðàâíà y: 
 Ïðèìå÷àíèå - Âûðàæåíèå â êâàäðàòíûõ ñêîáêàõ îçíà÷àåò
  ïåðåñå÷åíèå ñîáûòèé Õ £ õ è Y £ ó | en bivariate distribution function fr fonction de repartition a deux variables | 
 
  | 1.8. ìíîãîìåðíàÿ ôóíêöèÿ ðàñïðåäåëåíèÿ Ôóíêöèÿ, äàþùàÿ äëÿ ëþáîãî íàáîðà çíà÷åíèé õ,
  ó, ... âåðîÿòíîñòü òîãî, ÷òî íåñêîëüêî ñëó÷àéíûõ âåëè÷èí X, Y,
  ... áóäóò ìåíüøå èëè ðàâíû ñîîòâåòñòâóþùèì çíà÷åíèÿì õ, ó, ...: 
 | en multivariate distribution function fr fonction de repartition a plusieurs variables | 
 
  | 1.9. ìàðãèíàëüíîå ðàñïðåäåëåíèå
  (âåðîÿòíîñòåé) Ðàñïðåäåëåíèå âåðîÿòíîñòåé ïîäìíîæåñòâà k1
  èç ìíîæåñòâà k ñëó÷àéíûõ âåëè÷èí, ïðè ýòîì îñòàëüíûå (k - k1) ñëó÷àéíûå âåëè÷èíû ïðèíèìàþò
  ëþáûå çíà÷åíèÿ â ñîîòâåòñòâóþùèõ ìíîæåñòâàõ âîçìîæíûõ çíà÷åíèé. Ïðèìå÷àíèå - Äëÿ ðàñïðåäåëåíèÿ âåðîÿòíîñòåé òðåõ ñëó÷àéíûõ
  âåëè÷èí X, Y, Z ñóùåñòâóþò: - òðè
  äâóìåðíûõ ìàðãèíàëüíûõ ðàñïðåäåëåíèÿ, ò.å. ðàñïðåäåëåíèÿ ïàð (X, Y),
  (X, Z), (Y, Z); - òðè îäíîìåðíûõ ìàðãèíàëüíûõ ðàñïðåäåëåíèÿ, ò.å.
  ðàñïðåäåëåíèÿ X, Y è Z. | en marginal probability distribution fr loi de probabilite marginale | 
 
  | 1.10. óñëîâíîå ðàñïðåäåëåíèå (âåðîÿòíîñòåé) Ðàñïðåäåëåíèå ïîäìíîæåñòâà k1 < k ñëó÷àéíûõ âåëè÷èí
  èç ðàñïðåäåëåíèÿ ñëó÷àéíûõ âåëè÷èí, êîãäà îñòàëüíûå (k - k1)
  ñëó÷àéíûå âåëè÷èíû ïðèíèìàþò ïîñòîÿííûå çíà÷åíèÿ. Ïðèìå÷àíèå - Äëÿ ðàñïðåäåëåíèÿ âåðîÿòíîñòåé äâóõ ñëó÷àéíûõ
  âåëè÷èí X, Y ñóùåñòâóþò: - óñëîâíûå ðàñïðåäåëåíèÿ X: íåêîòîðîå
  êîíêðåòíîå ðàñïðåäåëåíèå ïðåäñòàâëÿþò êàê «ðàñïðåäåëåíèå X ïðè Y = y»; -
  óñëîâíûå ðàñïðåäåëåíèÿ Y: íåêîòîðîå êîíêðåòíîå ðàñïðåäåëåíèå ïðåäñòàâëÿþò
  êàê «ðàñïðåäåëåíèå Y ïðè Õ = õ». | en conditional probability distribution fr loi de probabilite conditionnelle | 
 
  | 1.11. íåçàâèñèìîñòü (ñëó÷àéíûõ âåëè÷èí) Äâå ñëó÷àéíûå âåëè÷èíû Õ è Y íåçàâèñèìû, åñëè èõ ôóíêöèè ðàñïðåäåëåíèÿ
  ïðåäñòàâëåíû êàê 
 ãäå F (õ, ¥) = G
  (õ) è F (¥, ó) = Í
  (ó) - ìàðãèíàëüíûå ôóíêöèè ðàñïðåäåëåíèÿ X è Y, ñîîòâåòñòâåííî, äëÿ âñåõ ïàð (õ, ó). Ïðèìå÷àíèÿ: 1. Äëÿ
  íåïðåðûâíîé íåçàâèñèìîé ñëó÷àéíîé âåëè÷èíû åå ïëîòíîñòü ðàñïðåäåëåíèÿ, åñëè
  îíà ñóùåñòâóåò, âûðàæàþò êàê 
 ãäå g
  (x) è h (ó) - ìàðãèíàëüíûå ïëîòíîñòè ðàñïðåäåëåíèÿ Õ
  è Y, ñîîòâåòñòâåííî, äëÿ âñåõ ïàð (õ, ó). Äëÿ
  äèñêðåòíîé íåçàâèñèìîé ñëó÷àéíîé âåëè÷èíû åå âåðîÿòíîñòè âûðàæàþò êàê 
 äëÿ
  âñåõ ïàð (xi, ój). 2. Äâà ñîáûòèÿ íåçàâèñèìû, åñëè âåðîÿòíîñòü òîãî,
  ÷òî îíè îáà ïðîèçîéäóò, ðàâíà ïðîèçâåäåíèþ âåðîÿòíîñòåé ýòèõ äâóõ ñîáûòèé. | en independence fr independance | 
 
  | 1.12. ïàðàìåòð Âåëè÷èíà, èñïîëüçóåìàÿ â îïèñàíèè ðàñïðåäåëåíèÿ
  âåðîÿòíîñòåé íåêîòîðîé ñëó÷àéíîé âåëè÷èíû. | en parameter fr parametre | 
 
  | 1.13. êîððåëÿöèÿ Âçàèìîçàâèñèìîñòü äâóõ èëè íåñêîëüêèõ ñëó÷àéíûõ
  âåëè÷èí â ðàñïðåäåëåíèè äâóõ èëè íåñêîëüêèõ ñëó÷àéíûõ âåëè÷èí. Ïðèìå÷àíèå - Áîëüøèíñòâî ñòàòèñòè÷åñêèõ ìåð êîððåëÿöèè
  èçìåðÿþò òîëüêî ñòåïåíü ëèíåéíîé çàâèñèìîñòè. | en correlation fr correlation | 
 
  | 1.14. êâàíòèëü (ñëó÷àéíîé âåëè÷èíû) Çíà÷åíèå ñëó÷àéíîé âåëè÷èíû õp, äëÿ êîòîðîãî ôóíêöèÿ ðàñïðåäåëåíèÿ ïðèíèìàåò
  çíà÷åíèå p (0 £ p £ 1) èëè åå
  çíà÷åíèå èçìåíÿåòñÿ ñêà÷êîì îò ìåíüøåãî p äî
  ïðåâûøàþùåãî ð. Ïðèìå÷àíèÿ 1.
  Åñëè çíà÷åíèå ôóíêöèè ðàñïðåäåëåíèÿ ðàâíî p âî
  âñåì èíòåðâàëå ìåæäó äâóìÿ ïîñëåäîâàòåëüíûìè çíà÷åíèÿìè ñëó÷àéíîé âåëè÷èíû,
  òî ëþáîå çíà÷åíèå â ýòîì èíòåðâàëå ìîæíî ðàññìàòðèâàòü êàê p-êâàíòèëü. 2.
  Âåëè÷èíà õp áóäåò p-êâàíòèëåì,
  åñëè 
 3. Äëÿ
  íåïðåðûâíîé âåëè÷èíû p-êâàíòèëü - ýòî òî çíà÷åíèå ïåðåìåííîé, íèæå
  êîòîðîãî ëåæèò ð-ÿ äîëÿ ðàñïðåäåëåíèÿ. 4. Ïðîöåíòèëü - ýòî êâàíòèëü, âûðàæåííûé â
  ïðîöåíòàõ. | en quantile fr quantile | 
 
  | 1.15. ìåäèàíà Êâàíòèëü ïîðÿäêà p = 0,5. | en median fr mediane | 
 
  | 1.16. êâàðòèëü Êâàíòèëü ïîðÿäêà p = 0,25 èëè
  p = 0,75. | en quartile fr quartile | 
 
  | 1.17. ìîäà Çíà÷åíèå ñëó÷àéíîé âåëè÷èíû, ïðè êîòîðîì ôóíêöèÿ
  ðàñïðåäåëåíèÿ âåðîÿòíîñòåé ìàññ èëè ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòåé
  èìååò ìàêñèìóì. Ïðèìå÷àíèå - Åñëè èìååòñÿ åäèíñòâåííàÿ ìîäà, òî
  ðàñïðåäåëåíèå âåðîÿòíîñòåé ñëó÷àéíîé âåëè÷èíû íàçûâàåòñÿ óíèìîäàëüíûì; åñëè
  èìååòñÿ áîëåå ÷åì îäíà ìîäà, îíî íàçûâàåòñÿ ìíîãîìîäàëüíûì, â ñëó÷àå äâóõ ìîä
  - áèìîäàëüíûì. | en mode fr mode | 
 
  | 1.18. ìàòåìàòè÷åñêîå îæèäàíèå (ñëó÷àéíîé
  âåëè÷èíû) à) Äëÿ äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû X,
  ïðèíèìàþùåé çíà÷åíèÿ xi ñ âåðîÿòíîñòÿìè
  pi,
  ìàòåìàòè÷åñêîå îæèäàíèå, åñëè îíî ñóùåñòâóåò, îïðåäåëÿþò ôîðìóëîé 
 ãäå ñóììèðóþò âñå çíà÷åíèÿ xi, êîòîðûå ìîæåò ïðèíèìàòü ñëó÷àéíàÿ âåëè÷èíà X. b) Äëÿ íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû X,
  èìåþùåé ïëîòíîñòü f (x), ìàòåìàòè÷åñêîå îæèäàíèå, åñëè îíî
  ñóùåñòâóåò, îïðåäåëÿþò ôîðìóëîé 
 ãäå èíòåãðàë áåðóò ïî âñåìó èíòåðâàëó
  (èíòåðâàëàì) èçìåíåíèÿ Õ. | en expectation; expected value; mean fr esperance mathematique; valeur esperee; moyenne | 
 
  | 1.19. ìàðãèíàëüíîå ìàòåìàòè÷åñêîå îæèäàíèå Ìàòåìàòè÷åñêîå îæèäàíèå ìàðãèíàëüíîãî
  ðàñïðåäåëåíèÿ ñëó÷àéíîé âåëè÷èíû. | en marginal expectation fr esperance mathematique marginale | 
 
  | 1.20. óñëîâíîå ìàòåìàòè÷åñêîå îæèäàíèå Ìàòåìàòè÷åñêîå îæèäàíèå óñëîâíîãî ðàñïðåäåëåíèÿ
  ñëó÷àéíîé âåëè÷èíû. | en conditional expectation fr esperance mathematique conditionnelle | 
 
  | 1.21. öåíòðèðîâàííàÿ ñëó÷àéíàÿ âåëè÷èíà Ñëó÷àéíàÿ âåëè÷èíà, ìàòåìàòè÷åñêîå îæèäàíèå
  êîòîðîé ðàâíî íóëþ. Ïðèìå÷àíèå - Åñëè ñëó÷àéíàÿ âåëè÷èíà Õ èìååò
  ìàòåìàòè÷åñêîå îæèäàíèå m, òî ñîîòâåòñòâóþùàÿ öåíòðèðîâàííàÿ ñëó÷àéíàÿ
  âåëè÷èíà ðàâíà X - m. | en centered random variable fr variable aleatoire centree | 
 
  | 1.22. äèñïåðñèÿ (ñëó÷àéíîé âåëè÷èíû) Ìàòåìàòè÷åñêîå îæèäàíèå êâàäðàòà öåíòðèðîâàííîé
  ñëó÷àéíîé âåëè÷èíû 
 | en variance fr variance | 
 
  | 1.23. ñòàíäàðòíîå îòêëîíåíèå (ñëó÷àéíîé
  âåëè÷èíû) Ïîëîæèòåëüíûé êâàäðàòíûé êîðåíü èç çíà÷åíèÿ
  äèñïåðñèè 
 | en standard deviation fr ecart-type | 
 
  | 1.24. êîýôôèöèåíò âàðèàöèè (ñëó÷àéíîé
  âåëè÷èíû) Îòíîøåíèå ñòàíäàðòíîãî îòêëîíåíèÿ ê àáñîëþòíîìó
  çíà÷åíèþ ìàòåìàòè÷åñêîãî îæèäàíèÿ ñëó÷àéíîé âåëè÷èíû 
 | en coefficient
  of variation  fr coefficient de variation | 
 
  | 1.25. ñòàíäàðòèçîâàííàÿ ñëó÷àéíàÿ âåëè÷èíà Ñëó÷àéíàÿ âåëè÷èíà, ìàòåìàòè÷åñêîå îæèäàíèå
  êîòîðîé ðàâíî íóëþ, à ñòàíäàðòíîå îòêëîíåíèå - åäèíèöå. Ïðèìå÷àíèÿ 1.
  Åñëè ñëó÷àéíàÿ âåëè÷èíà X èìååò ìàòåìàòè÷åñêîå îæèäàíèå m è ñòàíäàðòíîå îòêëîíåíèå s, òî ñîîòâåòñòâóþùàÿ ñòàíäàðòèçîâàííàÿ ñëó÷àéíàÿ
  âåëè÷èíà ðàâíà 
 Ðàñïðåäåëåíèå
  ñòàíäàðòèçîâàííîé ñëó÷àéíîé âåëè÷èíû íàçûâàåòñÿ ñòàíäàðòíûì ðàñïðåäåëåíèåì. 2. Ïîíÿòèå ñòàíäàðòèçîâàííîé ñëó÷àéíîé âåëè÷èíû ÿâëÿåòñÿ
  ÷àñòíûì ñëó÷àåì «ïðèâåäåííîé ñëó÷àéíîé âåëè÷èíû», îïðåäåëÿåìîé îòíîñèòåëüíî
  öåíòðàëüíîãî çíà÷åíèÿ è ïàðàìåòðà ìàñøòàáà, îòëè÷íûõ îò ìàòåìàòè÷åñêîãî
  îæèäàíèÿ è ñòàíäàðòíîãî îòêëîíåíèÿ. | en standardized random variable fr variable aleatoire centree reduite | 
 
  | 1.26. ìîìåíò1) ïîðÿäêà q
  îòíîñèòåëüíî íà÷àëà îòñ÷åòà Ìàòåìàòè÷åñêîå îæèäàíèå ñëó÷àéíîé âåëè÷èíû â
  ñòåïåíè q äëÿ îäíîìåðíîãî ðàñïðåäåëåíèÿ 
 Ïðèìå÷àíèå - Ìîìåíò ïåðâîãî ïîðÿäêà - ìàòåìàòè÷åñêîå
  îæèäàíèå ñëó÷àéíîé âåëè÷èíû Õ. | en moment of order q about the origin fr moment d’ordre q par rapport a l’origine | 
 
  | 1.27. ìîìåíò1) ïîðÿäêà q
  îòíîñèòåëüíî à Ìàòåìàòè÷åñêîå îæèäàíèå âåëè÷èíû (X - à)
  â ñòåïåíè q äëÿ îäíîìåðíîãî ðàñïðåäåëåíèÿ 
 | en moment of order q about an origin a fr moment d’ordre q a partir d’une origine a | 
 
  | 1.28. öåíòðàëüíûé ìîìåíò ïîðÿäêà q Ìàòåìàòè÷åñêîå îæèäàíèå öåíòðèðîâàííîé ñëó÷àéíîé
  âåëè÷èíû äëÿ îäíîìåðíîãî ðàñïðåäåëåíèÿ 
 Ïðèìå÷àíèå - Öåíòðàëüíûé ìîìåíò âòîðîãî ïîðÿäêà - äèñïåðñèÿ
  ñëó÷àéíîé âåëè÷èíû Õ. | en central moment of order q fr moment centre d’ordre q | 
 
  | 1.29. ñîâìåñòíûé ìîìåíò1) ïîðÿäêîâ
  q è s îòíîñèòåëüíî íà÷àëà îòñ÷åòà Ìàòåìàòè÷åñêîå îæèäàíèå ïðîèçâåäåíèÿ ñëó÷àéíîé
  âåëè÷èíû Õ â ñòåïåíè q è ñëó÷àéíîé âåëè÷èíû Y â ñòåïåíè s äëÿ äâóìåðíîãî ðàñïðåäåëåíèÿ 
 Ïðèìå÷àíèå -
  Ñîâìåñòíûé ìîìåíò ïîðÿäêîâ 1 è 0 - ìàðãèíàëüíîå ìàòåìàòè÷åñêîå îæèäàíèå
  ñëó÷àéíîé âåëè÷èíû X. Ñîâìåñòíûé ìîìåíò ïîðÿäêîâ 0 è 1 - ìàðãèíàëüíîå
  ìàòåìàòè÷åñêîå îæèäàíèå ñëó÷àéíîé âåëè÷èíû Y. | en joint moment of orders q and s about the origin fr moment d’ordres q et s a partir de l’origine | 
 
  | 1.30. ñîâìåñòíûé ìîìåíò1) ïîðÿäêîâ
  q è s îòíîñèòåëüíî òî÷êè (à, b) Ìàòåìàòè÷åñêîå îæèäàíèå ïðîèçâåäåíèÿ ñëó÷àéíîé âåëè÷èíû
  (X - à) â ñòåïåíè q è ñëó÷àéíîé âåëè÷èíû (Y - b) â ñòåïåíè s äëÿ äâóìåðíîãî
  ðàñïðåäåëåíèÿ: 
 | en joint moment of orders q and s about an origin (a,
  b) fr moment d’ordres q et s a partir d’une origine (a,
  b) | 
 
  | 1.31. ñîâìåñòíûé öåíòðàëüíûé ìîìåíò1)
  ïîðÿäêîâ q è s Ìàòåìàòè÷åñêîå îæèäàíèå ïðîèçâåäåíèÿ
  öåíòðèðîâàííîé ñëó÷àéíîé âåëè÷èíû (X - mx) â ñòåïåíè q è öåíòðèðîâàííîé ñëó÷àéíîé
  âåëè÷èíû (Y - my)â ñòåïåíè s äëÿ äâóìåðíîãî
  ðàñïðåäåëåíèÿ: 
 Ïðèìå÷àíèå - Ñîâìåñòíûé
  öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 2 è 0 - äèñïåðñèÿ ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ X. Ñîâìåñòíûé
  öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 0 è 2 - äèñïåðñèÿ ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ Y. 1) Åñëè
  ïðè îïðåäåëåíèè ìîìåíòîâ çíà÷åíèÿ ñëó÷àéíûõ âåëè÷èí X, X - a,
  Y, Y - b è ò.ä. çàìåíÿþò íà èõ àáñîëþòíûå çíà÷åíèÿ |Õ|,
  |Õ - à|, |Y|, |Y - b| è ò.ä., òî ìîìåíòû
  íàçûâàþò «àáñîëþòíûìè ìîìåíòàìè». | en joint central moment of orders q and s fr moment centre d’ordres q et s | 
 
  | 1.32. êîâàðèàöèÿ; êîððåëÿöèîííûé
  ìîìåíò Ñîâìåñòíûé öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 1 è 1: 
 | en covariance fr covariance | 
 
  | 1.33. êîýôôèöèåíò êîððåëÿöèè Îòíîøåíèå êîâàðèàöèè äâóõ ñëó÷àéíûõ âåëè÷èí ê
  ïðîèçâåäåíèþ èõ ñòàíäàðòíûõ îòêëîíåíèé: 
 Ïðèìå÷àíèÿ 1. Ýòà
  âåëè÷èíà âñåãäà áóäåò ïðèíèìàòü çíà÷åíèÿ îò ìèíóñ 1 äî ïëþñ 1, âêëþ÷àÿ
  êðàéíèå çíà÷åíèÿ. 2. Åñëè äâå ñëó÷àéíûå âåëè÷èíû íåçàâèñèìû, êîýôôèöèåíò êîððåëÿöèè ìåæäó
  íèìè ðàâåí íóëþ òîëüêî â ñëó÷àå äâóìåðíîãî íîðìàëüíîãî ðàñïðåäåëåíèÿ. | en correlation coefficient fr coefficient de correlation | 
 
  | 1.34. êðèâàÿ
  ðåãðåññèè (Y ïî X) Äëÿ äâóõ ñëó÷àéíûõ
  âåëè÷èí Õ è Y êðèâàÿ, îòîáðàæàþùàÿ çàâèñèìîñòü óñëîâíîãî
  ìàòåìàòè÷åñêîãî îæèäàíèÿ ñëó÷àéíîé âåëè÷èíû Y ïðè óñëîâèè Õ
  = õ äëÿ êàæäîé ïåðåìåííîé õ. Ïðèìå÷àíèå - Åñëè êðèâàÿ
  ðåãðåññèè Y ïî X ïðåäñòàâëÿåò ñîáîé ïðÿìóþ ëèíèþ, òî ðåãðåññèþ íàçûâàþò «ïðîñòîé
  ëèíåéíîé».  ýòîì ñëó÷àå êîýôôèöèåíò ëèíåéíîé ðåãðåññèè Y ïî Õ - ýòî êîýôôèöèåíò íàêëîíà ïåðåä õ â óðàâíåíèè ëèíèè
  ðåãðåññèè. | en regression
  curve fr courbe de regression | 
 
  | 1.35. ïîâåðõíîñòü
  ðåãðåññèè (Z ïî Õ è Y) Äëÿ òðåõ ñëó÷àéíûõ
  âåëè÷èí X, Y, Z ïîâåðõíîñòü, îòîáðàæàþùàÿ çàâèñèìîñòü
  óñëîâíîãî ìàòåìàòè÷åñêîãî îæèäàíèÿ ñëó÷àéíîé âåëè÷èíû Z ïðè óñëîâèè Õ
  = õ è Y = y äëÿ êàæäîé ïàðû ïåðåìåííûõ (õ, ó). Ïðèìå÷àíèÿ 1. Åñëè ïîâåðõíîñòü ðåãðåññèè
  ïðåäñòàâëÿåò ñîáîé ïëîñêîñòü, òî ðåãðåññèþ íàçûâàþò «ëèíåéíîé».  ýòîì ñëó÷àå
  êîýôôèöèåíò ëèíåéíîé ðåãðåññèè Z ïî Õ - ýòî êîýôôèöèåíò ïåðåä õ
  â óðàâíåíèè ðåãðåññèè. 2. Îïðåäåëåíèå ìîæíî ðàñïðîñòðàíèòü íà ÷èñëî ñëó÷àéíûõ âåëè÷èí áîëåå
  òðåõ. | en regression
  surface fr surface de regression | 
 
  | 1.36. ðàâíîìåðíîå
  ðàñïðåäåëåíèå; ïðÿìîóãîëüíîå ðàñïðåäåëåíèå à) Ðàñïðåäåëåíèå âåðîÿòíîñòåé
  íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû, ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòè êîòîðîé
  ïîñòîÿííà íà êîíå÷íîì èíòåðâàëå [à, b] è ðàâíà íóëþ âíå
  åãî. b) Ðàñïðåäåëåíèå âåðîÿòíîñòåé äèñêðåòíîé ñëó÷àéíîé
  âåëè÷èíû òàêîå, ÷òî 
 äëÿ i = 1, 2, ..., n. Ïðèìå÷àíèå - Ðàâíîìåðíîå
  ðàñïðåäåëåíèå äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû èìååò ðàâíûå âåðîÿòíîñòè äëÿ
  êàæäîãî èç ï çíà÷åíèé, òî åñòü 
 äëÿ j = 1, 2, ..., n. | en uniform
  distribution; rectangular distribution fr loi uniforme; loi rectangulare | 
 
  | 1.37. íîðìàëüíîå
  ðàñïðåäåëåíèå; ðàñïðåäåëåíèå Ëàïëàñà - Ãàóññà Ðàñïðåäåëåíèå
  âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû Õ òàêîå, ÷òî ïëîòíîñòü
  ðàñïðåäåëåíèÿ âåðîÿòíîñòåé ïðè - ¥ < õ < + ¥ ïðèíèìàåò äåéñòâèòåëüíîå çíà÷åíèå 
 Ïðèìå÷àíèå - m - ìàòåìàòè÷åñêîå îæèäàíèå; s - ñòàíäàðòíîå îòêëîíåíèå íîðìàëüíîãî ðàñïðåäåëåíèÿ. | en normal
  distribution; Laplace - Gauss distribution fr loi normale; loi de Laplace -
  Gauss | 
 
  | 1.38. ñòàíäàðòíîå
  íîðìàëüíîå ðàñïðåäåëåíèå; ñòàíäàðòíîå ðàñïðåäåëåíèå Ëàïëàñà - Ãàóññà Ðàñïðåäåëåíèå
  âåðîÿòíîñòåé ñòàíäàðòèçîâàííîé íîðìàëüíîé ñëó÷àéíîé âåëè÷èíû U,
  ïëîòíîñòü ðàñïðåäåëåíèÿ êîòîðîé 
 ïðè - ¥ < u < + ¥ (ï. 1.25, ïðèìå÷àíèå 1). | en standardized
  normal distribution; standardized Laplace - Gauss distribution fr loi normale reduite; loi de
  Laplace - Gauss reduite | 
 
  | 1.39. ðàñïðåäåëåíèå c2 Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé
  âåëè÷èíû, ïðèíèìàþùåé çíà÷åíèÿ îò 0 äî + ¥, ïëîòíîñòü
  ðàñïðåäåëåíèÿ âåðîÿòíîñòåé êîòîðîé 
 ãäå c2 ³ 0 ïðè
  çíà÷åíèè ïàðàìåòðà n = 1,
  2,...; à - ãàììà-ôóíêöèÿ. Ïðèìå÷àíèÿ 1.
  Ñóììà êâàäðàòîâ n íåçàâèñèìûõ ñòàíäàðòèçîâàííûõ íîðìàëüíûõ
  ñëó÷àéíûõ âåëè÷èí îáðàçóåò ñëó÷àéíóþ âåëè÷èíó c2 ñ ïàðàìåòðîì n; n íàçûâàþò ñòåïåíüþ ñâîáîäû ñëó÷àéíîé âåëè÷èíû c2. 2. Ðàñïðåäåëåíèå âåðîÿòíîñòåé ñëó÷àéíîé âåëè÷èíû c2/2 - ýòî ãàììà-ðàñïðåäåëåíèå ñ ïàðàìåòðîì m = n/2. | en chi-squared distribution; c2-distribution fr loi de chi carre; loi de c2 | 
 
  | 1.40. t-ðàñïðåäåëåíèå; ðàñïðåäåëåíèå
  Ñòüþäåíòà Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé
  âåëè÷èíû, ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòåé êîòîðîé 
 ãäå - ¥ < t < + ¥ ñ
  ïàðàìåòðîì n = 1,
  2,...; à - ãàììà-ôóíêöèÿ. Ïðèìå÷àíèå - Îòíîøåíèå äâóõ íåçàâèñèìûõ ñëó÷àéíûõ âåëè÷èí,
  ÷èñëèòåëü êîòîðîãî - ñòàíäàðòèçîâàííàÿ íîðìàëüíàÿ ñëó÷àéíàÿ âåëè÷èíà, à
  çíàìåíàòåëü - ïîëîæèòåëüíîå çíà÷åíèå êâàäðàòíîãî êîðíÿ èç ÷àñòíîãî îò äåëåíèÿ
  ñëó÷àéíîé âåëè÷èíû c2 íà åå ÷èñëî ñòåïåíåé ñâîáîäû n - ýòî ðàñïðåäåëåíèå Ñòüþäåíòà ñ v ñòåïåíÿìè
  ñâîáîäû. | en t-distribution; Students distribution fr loi de t; loi de Student | 
 
  | 1.41. F-ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé
  âåëè÷èíû, ïðèíèìàþùåé çíà÷åíèÿ îò 0 äî +°î, ïëîòíîñòü ðàñïðåäåëåíèÿ
  âåðîÿòíîñòåé êîòîðîé 
 ãäå F ³ 0 ñ
  ïàðàìåòðàìè n1 = 1,
  2,...; n2 = 1,
  2,...; à - ãàììà-ôóíêöèÿ. Ïðèìå÷àíèå - Ýòî ðàñïðåäåëåíèå îòíîøåíèÿ äâóõ íåçàâèñèìûõ
  ñëó÷àéíûõ âåëè÷èí ñ ðàñïðåäåëåíèÿìè c2, â êîòîðîì äåëèìîå è äåëèòåëü ðàçäåëåíû íà ñâîè
  ÷èñëà ñòåïåíåé ñâîáîäû. ×èñëî ñòåïåíåé ñâîáîäû ÷èñëèòåëÿ ðàâíî n1, à çíàìåíàòåëÿ - n2.  òàêîì ïîðÿäêå è çàïèñûâàþò ÷èñëà ñòåïåíåé ñâîáîäû ñëó÷àéíîé âåëè÷èíû
  ñ ðàñïðåäåëåíèåì F. | en F-distribution fr loi de F | 
 
  | 1.42 ëîãàðèôìè÷åñêè íîðìàëüíîå ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé
  âåëè÷èíû X, êîòîðàÿ ìîæåò ïðèíèìàòü ëþáûå çíà÷åíèÿ îò à äî + ¥ è
  ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòè êîòîðîé 
 ãäå x > a; m è s -
  ñîîòâåòñòâåííî ìàòåìàòè÷åñêîå îæèäàíèå è ñòàíäàðòíîå îòêëîíåíèå ñëó÷àéíîé
  âåëè÷èíû  . Ïðèìå÷àíèÿ 1.
  Ðàñïðåäåëåíèå âåðîÿòíîñòåé ñëó÷àéíîé âåëè÷èíû  - ýòî íîðìàëüíîå
  ðàñïðåäåëåíèå; m è s - ñîîòâåòñòâåííî ìàòåìàòè÷åñêîå îæèäàíèå è
  ñòàíäàðòíîå îòêëîíåíèå ýòîé ñëó÷àéíîé âåëè÷èíû. 2.
  Ïàðàìåòðû m è s - ýòî íå ëîãàðèôìû ìàòåìàòè÷åñêîãî îæèäàíèÿ è
  ñòàíäàðòíîãî îòêëîíåíèÿ X. 3.
  ×àñòî âìåñòî îáîçíà÷åíèÿ loge (èëè ln) èñïîëüçóþò log10.  ýòîì ñëó÷àå 
 ãäå m è s - ñîîòâåòñòâåííî ìàòåìàòè÷åñêîå îæèäàíèå è
  ñòàíäàðòíîå îòêëîíåíèå  ; 
 | en log-normal distribution fr loi log-normale | 
 
  | 1.43. ýêñïîíåíöèàëüíîå
  ðàñïðåäåëåíèå Ðàñïðåäåëåíèå
  âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû X, êîòîðàÿ ìîæåò ïðèíèìàòü
  ëþáûå çíà÷åíèÿ îò 0 äî + ¥ è ïëîòíîñòü ðàñïðåäåëåíèÿ êîòîðîé 
 ïðè õ ³ 0 è ïàðàìåòðå  , ãäå b -
  ïàðàìåòð ìàñøòàáà. Ïðèìå÷àíèå - Òàêîå
  ðàñïðåäåëåíèå âåðîÿòíîñòåé ìîæíî îáîáùèòü ïîäñòàíîâêîé (õ - à)
  âìåñòî õ ïðè õ ³ à. | en exponential
  distribution fr loi exponentielle | 
 
  | 1.44. ãàììà-ðàñïðåäåëåíèå Ðàñïðåäåëåíèå
  âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû X, êîòîðàÿ ìîæåò ïðèíèìàòü
  ëþáûå çíà÷åíèÿ îò 0 äî + ¥ è ïëîòíîñòü âåðîÿòíîñòè êîòîðîé 
 ïðè õ ³ 0 è ïàðàìåòðàõ m > 0, a > 0; ãäå Ã -
  ãàììà-ôóíêöèÿ 
 Ïðèìå÷àíèÿ 1. Ïðè m öåëîì èìååì: à (m) = (m - 1)! 2. Ïàðàìåòð m îïðåäåëÿåò ôîðìó ðàñïðåäåëåíèÿ. Ïðè m = 1 ãàììà-ðàñïðåäåëåíèå ïðåâðàùàåòñÿ â ýêñïîíåíöèàëüíîå ðàñïðåäåëåíèå. 3. Ñóììà m íåçàâèñèìûõ ñëó÷àéíûõ âåëè÷èí, ïîä÷èíÿþùèõñÿ ýêñïîíåíöèàëüíîìó çàêîíó
  ðàñïðåäåëåíèÿ ñ ïàðàìåòðîì  - ýòî
  ãàììà-ðàñïðåäåëåíèå ñ ïàðàìåòðàìè m è a. | en gamma
  distribution fr loi gamma | 
 
  | 1.45. áåòà-ðàñïðåäåëåíèå Ðàñïðåäåëåíèå
  âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû X, êîòîðàÿ ìîæåò ïðèíèìàòü
  ëþáûå çíà÷åíèÿ îò 0 äî 1, âêëþ÷àÿ ãðàíèöû, è ïëîòíîñòü ðàñïðåäåëåíèÿ êîòîðîé 
 ïðè 0 £ x £ 1 è
  ïàðàìåòðàõ m1 > 0, m2 > 0, ãäå à - ãàììà-ôóíêöèÿ. Ïðèìå÷àíèå - Ïðè m1 = m2 = 1 áåòà-ðàñïðåäåëåíèå ïåðåõîäèò â ðàâíîìåðíîå ðàñïðåäåëåíèå ñ
  ïàðàìåòðàìè a = 0 è b = 1. | en beta
  distribution fr loi beta | 
 
  | 1.46. ðàñïðåäåëåíèå Ãóìáåëÿ; ðàñïðåäåëåíèå
  ýêñòðåìàëüíûõ çíà÷åíèé òèïà I Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé
  âåëè÷èíû Õ ñ ôóíêöèåé ðàñïðåäåëåíèÿ: 
 ãäå - ¥ < õ
  < + ¥; 
 à ïàðàìåòðû - ¥ < a < + ¥, b > 0. | en Gumbel distribution; type I extreme value distribution fr loi de Gumbel; loi des valeurs extremes de type I | 
 
  | 1.47. ðàñïðåäåëåíèå Ôðåøý; ðàñïðåäåëåíèå
  ýêñòðåìàëüíûõ çíà÷åíèé òèïà II Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé
  âåëè÷èíû Õ ñ ôóíêöèåé ðàñïðåäåëåíèÿ: 
 ãäå õ ³ à; 
 à ïàðàìåòðû
  - ¥ < a < + ¥, k > 0, b > 0. Ïðèìå÷àíèå - Ïàðàìåòð k îïðåäåëÿåò ôîðìó
  ðàñïðåäåëåíèÿ. | en Frechet distribution; type II extreme value distribution fr loi de Frechet; loi des valeurs extremes de type II | 
 
  | 1.48. ðàñïðåäåëåíèå Âåéáóëëà; ðàñïðåäåëåíèå
  ýêñòðåìàëüíûõ çíà÷åíèé òèïà III Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé
  âåëè÷èíû Õ ñ ôóíêöèåé ðàñïðåäåëåíèÿ: 
 ãäå õ ³ à; y = (x - a)/b; à ïàðàìåòðû
  - ¥ < a < + ¥, k > 0, b > 0. Ïðèìå÷àíèå - Ïàðàìåòð k îïðåäåëÿåò ôîðìó
  ðàñïðåäåëåíèÿ | en Weibull distribution; tupe III extreme value distribution fr loi de Weibull; loi des valeurs extremes de type III | 
 
  | 1.49. áèíîìèàëüíîå ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû
  X, ïðèíèìàþùåé ëþáûå öåëûå çíà÷åíèÿ îò 0 äî n, òàêîå ÷òî 
 ïðè õ
  = 0, 1, 2,..., n è
  ïàðàìåòðàõ n = 1, 2,...
  è 0 < p < 1, ãäå  | en binomial distribution fr loi binomiale | 
 
  | 1.50. îòðèöàòåëüíîå áèíîìèàëüíîå
  ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé äèñêðåòíîé ñëó÷àéíîé
  âåëè÷èíû Õ òàêîå, ÷òî 
 ïðè x = 0, 1, 2,
  … è ïàðàìåòðàõ c > 0
  (öåëîå ïîëîæèòåëüíîå ÷èñëî), 0 < p < 1, ãäå  Ïðèìå÷àíèÿ 1.
  Íàçâàíèå «îòðèöàòåëüíîå áèíîìèàëüíîå ðàñïðåäåëåíèå» ñâÿçàíî ñ òåì, ÷òî
  ïîñëåäîâàòåëüíûå âåðîÿòíîñòè ïðè õ = 0, 1, 2, … ïîëó÷àþò ïðè
  ðàçëîæåíèè áèíîìà ñ îòðèöàòåëüíûì ïîêàçàòåëåì ñòåïåíè (- ñ): 
 ïîñëåäîâàòåëüíûõ
  ïîëîæèòåëüíûõ öåëûõ ñòåïåíåé âåëè÷èíû (1 - ð). 2. Êîãäà ïàðàìåòð ñ ðàâåí 1, ðàñïðåäåëåíèå
  íàçûâàþò ãåîìåòðè÷åñêèì ðàñïðåäåëåíèåì. | en negative binomial distribution fr loi binomiale negative | 
 
  | 1.51. ðàñïðåäåëåíèå Ïóàññîíà Ðàñïðåäåëåíèå âåðîÿòíîñòåé äèñêðåòíîé ñëó÷àéíîé
  âåëè÷èíû Õ òàêîå, ÷òî 
 ïðè õ = 0, 1, 2, ... è ïàðàìåòðå m > 0. Ïðèìå÷àíèÿ 1.
  Ìàòåìàòè÷åñêîå îæèäàíèå è äèñïåðñèÿ ðàñïðåäåëåíèÿ Ïóàññîíà îáà ðàâíû
  ïàðàìåòðó m. 2. Ðàñïðåäåëåíèå Ïóàññîíà ìîæíî èñïîëüçîâàòü äëÿ
  àïïðîêñèìàöèè áèíîìèàëüíîãî ðàñïðåäåëåíèÿ, êîãäà n -
  âåëèêî, p - ìàëî, à ïðîèçâåäåíèå ïð = m. | en Poission distribution fr loi de Poisson | 
 
  | 1.52. ãèïåðãåîìåòðè÷åñêîå ðàñïðåäåëåíèå Äèñêðåòíîå ðàñïðåäåëåíèå âåðîÿòíîñòåé ñ ôóíêöèåé
  ðàñïðåäåëåíèÿ: 
 ãäå õ = max (0, Ì
  - N + n), ..., max (0, Ì - N + n) + 1, ..., min (Ì,
  n); ïàðàìåòðû N = 1,
  2,...; Ì = 0, 1, 2, ..., N; n = 1, 2,..., N è  è ò.ï.
 Ïðèìå÷àíèå - Ýòî ðàñïðåäåëåíèå âîçíèêàåò êàê ðàñïðåäåëåíèå
  âåðîÿòíîñòåé ÷èñëà óñïåõîâ â âûáîðêå îáúåìà n,
  âçÿòîé áåç âîçâðàùåíèÿ èç ãåíåðàëüíîé ñîâîêóïíîñòè îáúåìà N,
  ñîäåðæàùèé Ì óñïåõîâ. | en hypergeometric distribution fr loi hypergeometrique | 
 
  | 1.53. äâóìåðíîå íîðìàëüíîå ðàñïðåäåëåíèå;
  äâóìåðíîå ðàñïðåäåëåíèå Ëàïëàñà - Ãàóññà Ðàñïðåäåëåíèå âåðîÿòíîñòåé äâóõ íåïðåðûâíûõ
  ñëó÷àéíûõ âåëè÷èí Õ è Y òàêîå, ÷òî
  ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòåé 
 ïðè - ¥ < x
  < + ¥ è - ¥ < ó
  < + ¥, ãäå mx è my - ìàòåìàòè÷åñêèå îæèäàíèÿ; sx è sy - ñòàíäàðòíûå îòêëîíåíèÿ ìàðãèíàëüíûõ
  ðàñïðåäåëåíèé Õ è Y, êîòîðûå
  íîðìàëüíû; r -
  êîýôôèöèåíò êîððåëÿöèè Õ è Y. Ïðèìå÷àíèå - Ýòî ïîíÿòèå ìîæíî ðàñïðîñòðàíèòü íà ìíîãîìåðíîå
  ðàñïðåäåëåíèå áîëåå äâóõ ñëó÷àéíûõ âåëè÷èí òàêèõ, ÷òî ìàðãèíàëüíîå
  ðàñïðåäåëåíèå ëþáîé èõ ïàðû ìîæåò áûòü ïðåäñòàâëåíî â òîé ôîðìå, ÷òî
  ïðèâåäåíà âûøå. | en bivariate normal distribution; bivariate Laplace - Gauss
  distribution fr loi normale a deux variables; loi de Laplace - Gauss a deux
  variables | 
 
  | 1.54 ñòàíäàðòèçîâàííîå äâóìåðíîå íîðìàëüíîå
  ðàñïðåäåëåíèå; íîðìèðîâàííîå äâóìåðíîå ðàñïðåäåëåíèå Ëàïëàñà- Ãàóññà Ðàñïðåäåëåíèå âåðîÿòíîñòåé ïàðû
  ñòàíäàðòèçîâàííûõ íîðìàëüíûõ ñëó÷àéíûõ âåëè÷èí 
 ñ ïëîòíîñòüþ ðàñïðåäåëåíèÿ 
 ãäå - ¥ < u < + ¥ è - ¥ < v
  < + ¥, (X, Y) - ïàðà
  íîðìàëüíûõ ñëó÷àéíûõ âåëè÷èí ñ ïàðàìåòðàìè (mx, my) è (sx, sy) è r; r -
  êîýôôèöèåíò êîððåëÿöèè Õ è Y, à òàêæå U è V. Ïðèìå÷àíèå - Ýòî ïîíÿòèå ìîæíî ðàñïðîñòðàíèòü íà
  ìíîãîìåðíîå ðàñïðåäåëåíèå áîëåå äâóõ ñëó÷àéíûõ âåëè÷èí, òàêèõ ÷òî
  ìàðãèíàëüíîå ðàñïðåäåëåíèå ëþáîé èõ ïàðû ìîæåò áûòü ïðåäñòàâëåíî â òîé æå
  ôîðìå, ÷òî ïðèâåäåíà âûøå. | en standardized bivariate normal distribution; standardized
  bivariate Laplace - Gauss distribution fr loi normale reduite a deux variables; loi de Laplace - Gauss
  reduite a deux variables | 
 
  | 1.55. ðàñïðåäåëåíèå ìíîãîìåðíîé ñëó÷àéíîé
  âåëè÷èíû; ìóëüòèíîìèàëüíîå ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé k äèñêðåòíûõ
  ñëó÷àéíûõ âåëè÷èí Õ1, Õ2, ..., Õk òàêîå, ÷òî 
 ãäå x1, x2, ..., xk - öåëûå ÷èñëà, òàêèå ÷òî x1 + x2 + ... + xk = n, ñ ïàðàìåòðàìè pi ³ 0 (i = 1, 2,..., k) è  , ãäå k = 2, 3, ... Ïðèìå÷àíèå - Ðàñïðåäåëåíèå ìíîãîìåðíîé ñëó÷àéíîé âåëè÷èíû -
  îáîáùåíèå áèíîìèàëüíîãî ðàñïðåäåëåíèÿ (ï.
  1.49) íà ðàñïðåäåëåíèå k > 2 ñëó÷àéíûõ
  âåëè÷èí. | en multinomial distribution fr loi multinomiale | 
 
  |  |   | 
 
  | 2.1. åäèíèöà [îáúåêò] Òî, ÷òî ìîæíî ðàññìîòðåòü è îïèñàòü
  èíäèâèäóàëüíî. Ïðèìå÷àíèå - Åäèíèöåé ìîæåò, íàïðèìåð, áûòü: -
  èçäåëèå; -
  îïðåäåëåííîå êîëè÷åñòâî ìàòåðèàëà; -
  óñëóãà, äåéñòâèå èëè ïðîöåññ; - îðãàíèçàöèÿ
  èëè ÷åëîâåê; - íåêîòîðàÿ èõ êîìáèíàöèÿ. | en item; entity fr individu; entite | 
 
  | 2.2. ïðèçíàê Ñâîéñòâî, êîòîðîå ïîìîãàåò èäåíòèôèöèðîâàòü èëè
  ðàçëè÷àòü åäèíèöû äàííîé ãåíåðàëüíîé ñîâîêóïíîñòè. Ïðèìå÷àíèå - Ïðèçíàê ìîæåò áûòü êîëè÷åñòâåííûì èëè
  êà÷åñòâåííûì (àëüòåðíàòèâíûì). | en characteristic fr caractere | 
 
  | 2.3. (ãåíåðàëüíàÿ) ñîâîêóïíîñòü Ìíîæåñòâî âñåõ ðàññìàòðèâàåìûõ åäèíèö. Ïðèìå÷àíèå - Äëÿ ñëó÷àéíîé âåëè÷èíû ðàñïðåäåëåíèå
  âåðîÿòíîñòåé ðàññìàòðèâàþò êàê îïðåäåëåíèå ñîâîêóïíîñòè ýòîé ñëó÷àéíîé
  âåëè÷èíû. | en population fr population | 
 
  | 2.4. ðàìêè îòáîðà Ñïèñîê, çàïîëíÿåìûé äëÿ âûáîðî÷íûõ öåëåé, â
  êîòîðîì îòìå÷àþò òå åäèíèöû, êîòîðûå íàäî îòîáðàòü è èññëåäîâàòü. | en sampling frame fr base d’echantillonnage | 
 
  | 2.5. ïîäñîâîêóïíîñòü Îïðåäåëåííàÿ ÷àñòü ãåíåðàëüíîé ñîâîêóïíîñòè. | en subpopulation fr sous-population | 
 
  | 2.6. íàáëþäàåìîå çíà÷åíèå Çíà÷åíèå äàííîãî ïðèçíàêà, ïîëó÷åííîãî â
  ðåçóëüòàòå åäèíè÷íîãî íàáëþäåíèÿ (ñì. ï. 3.6). | en observed value fr valeur observee | 
 
  | 2.7. êëàññ à) Äëÿ êà÷åñòâåííîãî ïðèçíàêà - Îïðåäåëåííûå
  ãðóïïû îáúåêòîâ, êàæäûå èç êîòîðûõ èìåþò îòäåëüíûå îáùèå ïðèçíàêè, âçàèìíî
  èñêëþ÷àþò äðóã äðóãà, èñ÷åðïûâàÿ âñå îáúåêòû. b) Äëÿ
  êîëè÷åñòâåííîãî ïðèçíàêà - Êàæäûé èç ïîñëåäîâàòåëüíûõ âçàèìîèñêëþ÷àþùèõ
  èíòåðâàëîâ, íà êîòîðûå ðàçäåëåí âåñü èíòåðâàë âàðüèðîâàíèÿ. | en class fr classe | 
 
  | 2.8. ãðàíèöû êëàññà; ïðåäåëû êëàññà Çíà÷åíèÿ, îïðåäåëÿþùèå âåðõíþþ è íèæíþþ ãðàíèöû
  êëàññà. Ïðèìå÷àíèÿ 1. Ñëåäóåò
  óòî÷íèòü, êàêóþ èç äâóõ ãðàíèö ñ÷èòàþò ïðèíàäëåæàùåé êëàññó. 2. Åñëè âîçìîæíî, íàäî ÷òîáû ãðàíèöà êëàññà íå
  ñîâïàäàëà ñ âîçìîæíûì çíà÷åíèåì. | en class
  limits; class boundaries fr limites de classe; frontieres de classe | 
 
  | 2.9. ñåðåäèíà êëàññà Ñðåäíåå àðèôìåòè÷åñêîå âåðõíåé è íèæíåé ãðàíèö
  êëàññà äëÿ êîëè÷åñòâåííîãî ïðèçíàêà. | en mid-point of class fr centre de classe | 
 
  | 2.10. èíòåðâàë êëàññà Ðàçíèöà ìåæäó âåðõíåé è íèæíåé ãðàíèöàìè êëàññà
  äëÿ êîëè÷åñòâåííîãî ïðèçíàêà. | en class width fr largeur de classe | 
 
  | 2.11. ÷àñòîòà ×èñëî íàñòóïëåíèé ñîáûòèÿ äàííîãî òèïà èëè ÷èñëî
  íàáëþäåíèé, ïîïàâøèõ â äàííûé êëàññ. | en frequency fr effectif | 
 
  | 2.12. íàêîïëåííàÿ êóìóëÿòèâíàÿ ÷àñòîòà ×èñëî íàáëþäåíèé èç ìíîæåñòâà, èìåþùèõ çíà÷åíèÿ,
  êîòîðûå ìåíüøå çàäàííîãî çíà÷åíèÿ èëè ðàâíû åìó. Ïðèìå÷àíèå - Äëÿ äàííûõ, îáúåäèíåííûõ â êëàññû,
  êóìóëÿòèâíóþ ÷àñòîòó ìîæíî óêàçàòü òîëüêî â ãðàíèöàõ êëàññà. | en cumulative frequency fr effectif cumule | 
 
  | 2.13. îòíîñèòåëüíàÿ ÷àñòîòà ×àñòîòà, äåëåííàÿ íà îáùåå ÷èñëî ñîáûòèé èëè
  íàáëþäåíèé. | en relative frequency fr frequence | 
 
  | 2.14. êóìóëÿòèâíàÿ îòíîñèòåëüíàÿ ÷àñòîòà Êóìóëÿòèâíàÿ ÷àñòîòà, äåëåííàÿ íà îáùåå ÷èñëî
  íàáëþäåíèé. | en cumulative relative frequency fr frequence cumule | 
 
  | 2.15. ðàñïðåäåëåíèå ÷àñòîò Ýìïèðè÷åñêîå îòíîøåíèå ìåæäó çíà÷åíèÿìè ïðèçíàêà
  è åãî ÷àñòîòàìè èëè åãî îòíîñèòåëüíûìè ÷àñòîòàìè. Ïðèìå÷àíèå - Ýòî ðàñïðåäåëåíèå ìîæíî ïðåäñòàâèòü ãðàôè÷åñêè
  â âèäå ãèñòîãðàììû, ñòîëáèêîâîé äèàãðàììû, ïîëèãîíà êóìóëÿòèâíûõ ÷àñòîò èëè
  êàê òàáëèöó ñîïðÿæåííîñòè äâóõ ïðèçíàêîâ. | en frequency distribution fr distribution d’effectif | 
 
  | 2.16. îäíîìåðíîå ðàñïðåäåëåíèå ÷àñòîò Ðàñïðåäåëåíèå ÷àñòîò äëÿ åäèíñòâåííîãî ïðèçíàêà. | en univariate frequency distribution fr distribution d’effectif a une variable | 
 
  | 2.17. ãèñòîãðàììà Ãðàôè÷åñêîå ïðåäñòàâëåíèå ðàñïðåäåëåíèÿ ÷àñòîò
  äëÿ êîëè÷åñòâåííîãî ïðèçíàêà, îáðàçóåìîå ñîïðèêàñàþùèìèñÿ ïðÿìîóãîëüíèêàìè,
  îñíîâàíèÿìè êîòîðûõ ñëóæàò èíòåðâàëû êëàññîâ, à ïëîùàäè ïðîïîðöèîíàëüíû
  ÷àñòîòàì ýòèõ êëàññîâ. | en histogram fr histogramme | 
 
  | 2.18. ñòîëáèêîâàÿ äèàãðàììà Ãðàôè÷åñêîå ïðåäñòàâëåíèå ðàñïðåäåëåíèÿ ÷àñòîò
  äëÿ äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû, îáðàçóåìîå íàáîðîì ñòîëáöîâ ðàâíîé øèðèíû,
  âûñîòû êîòîðûõ ïðîïîðöèîíàëüíû ÷àñòîòàì. | en bar chart; bar diagram fr diagramme en batons | 
 
  | 2.19. ïîëèãîí êóìóëÿòèâíûõ ÷àñòîò Ëîìàíàÿ ëèíèÿ, ïîëó÷àåìàÿ ïðè ñîåäèíåíèè òî÷åê,
  àáñöèññû êîòîðûõ ðàâíû âåðõíèì ãðàíèöàì êëàññîâ, à îðäèíàòû - ëèáî
  êóìóëÿòèâíûì àáñîëþòíûì ÷àñòîòàì, ëèáî êóìóëÿòèâíûì îòíîñèòåëüíûì ÷àñòîòàì. | en cumulative frequency polygon fr polygone d’effectif cumule | 
 
  | 2.20. äâóìåðíîå ðàñïðåäåëåíèå ÷àñòîò Ýìïèðè÷åñêîå îòíîøåíèå ìåæäó ïàðàìè çíà÷åíèé èëè
  êëàññàìè ïðèçíàêîâ ñ îäíîé ñòîðîíû, è èõ ÷àñòîòàìè ñ äðóãîé - äëÿ äâóõ ïðèçíàêîâ,
  ðàññìàòðèâàåìûõ îäíîâðåìåííî. | en bivariate frequency distribution fr distribution d’effectif a deux variables | 
 
  | 2.21. äèàãðàììà ðàçáðîñà [ðàññåÿíèÿ] Ãðàôè÷åñêîå ïðåäñòàâëåíèå ìíîæåñòâà òî÷åê,
  êîîðäèíàòû êîòîðûõ õ è ó â îáû÷íîé ïðÿìîóãîëüíîé ñèñòåìå
  êîîðäèíàò - ýòî çíà÷åíèÿ ïðèçíàêîâ Õ è Y. Ïðèìå÷àíèÿ 1.
  Ìíîæåñòâî èç n ýëåìåíòîâ òàêèì îáðàçîì äàåò n
  òî÷åê, êîòîðûå íàãëÿäíî ïîêàçûâàþò çàâèñèìîñòü ìåæäó Õ è Y. 2. Êîíöåïöèþ äèàãðàììû ðàçáðîñà ìîæíî ðàñïðîñòðàíèòü
  íà áîëåå ÷åì äâà ïðèçíàêà. | en scatter diagram fr nuage de points | 
 
  | 2.22. òàáëèöà ñîïðÿæåííîñòè äâóõ ïðèçíàêîâ Òàáëèöà, èñïîëüçóåìàÿ äëÿ ïðåäñòàâëåíèÿ
  ðàñïðåäåëåíèÿ äâóõ ïðèçíàêîâ, â ñòðîêàõ è ñòîëáöàõ êîòîðîé óêàçûâàþò,
  ñîîòâåòñòâåííî, çíà÷åíèÿ èëè êëàññû ïåðâîãî è âòîðîãî ïðèçíàêîâ, ïðè ýòîì íà
  ïåðåñå÷åíèè ñòðîêè è ñòîëáöà ïîÿâëÿåòñÿ ÷àñòîòà, ñîîòâåòñòâóþùàÿ äàííîé
  êîìáèíàöèè çíà÷åíèé èëè êëàññîâ. Ïðèìå÷àíèå - Ýòî ïîíÿòèå ìîæíî ðàñïðîñòðàíèòü íà ÷èñëî
  ïðèçíàêîâ áîëåå äâóõ. | en two-way table of frequencies; contingency table fr table d’effectifs a double entree, tableau de contingence | 
 
  | 2.23. ìíîãîìåðíîå ðàñïðåäåëåíèå ÷àñòîò Ýìïèðè÷åñêîå îòíîøåíèå ìåæäó ñîâìåñòíûìè
  íàáîðàìè çíà÷åíèé èëè êëàññîâ ïðèçíàêîâ ñ îäíîé ñòîðîíû è èõ ÷àñòîòàìè ñ
  äðóãîé - äëÿ íåñêîëüêèõ ïðèçíàêîâ, ðàññìàòðèâàåìûõ îäíîâðåìåííî. | en multivariate frequency distribution fr distribution d’effectif a plusieurs variables | 
 
  | 2.24. ìàðãèíàëüíîå ðàñïðåäåëåíèå ÷àñòîò Ðàñïðåäåëåíèå ÷àñòîò ïîäìíîæåñòâà k1 < k ïðèçíàêîâ èç
  ìíîãîìåðíîãî ðàñïðåäåëåíèÿ ÷àñòîò k ïðèçíàêîâ, êîãäà îñòàëüíûå (k
  - k1) ïåðåìåííûõ ïðèíèìàþò ëþáûå çíà÷åíèÿ èç ñâîèõ îáëàñòåé
  çíà÷åíèé. Ïðèìå÷àíèÿ 1. Äëÿ
  k = 2 ïðèçíàêîâ ìàðãèíàëüíîå ðàñïðåäåëåíèå ÷àñòîò ìîæíî ïîëó÷èòü,
  äîáàâëÿÿ ê êàæäîìó çíà÷åíèþ èëè êëàññó çíà÷åíèé ðàññìàòðèâàåìîãî ïðèçíàêà
  ñîîòâåòñòâóþùèå ÷àñòîòû èëè îòíîñèòåëüíûå ÷àñòîòû îñòàëüíûõ ïðèçíàêîâ. 2. Â
  ðàñïðåäåëåíèè ÷àñòîò òðåõ ïðèçíàêîâ X, Y è Z
  ñóùåñòâóþò: - òðè
  äâóìåðíûõ ìàðãèíàëüíûõ ðàñïðåäåëåíèÿ ÷àñòîò, òî åñòü ðàñïðåäåëåíèÿ ïàð (X,
  Y), (X, Z), (Y, Z); - òðè îäíîìåðíûõ ìàðãèíàëüíûõ ðàñïðåäåëåíèÿ
  ÷àñòîò, òî åñòü ðàñïðåäåëåíèÿ X, Y è Z. | en marginal frequency distribution fr distribution d’effectif marginale | 
 
  | 2.25. óñëîâíîå ðàñïðåäåëåíèå ÷àñòîò Ðàñïðåäåëåíèå ÷àñòîò k1 < 1
  ïðèçíàêîâ èç ìíîãîìåðíîãî ðàñïðåäåëåíèÿ ÷àñòîò, êîãäà îñòàëüíûå (k - k1) ïðèçíàêîâ ôèêñèðîâàíû. Ïðèìå÷àíèÿ 1. Äëÿ
  k = 2 ïðèçíàêîâ óñëîâíûå ðàñïðåäåëåíèÿ ÷àñòîò ñ÷èòûâàþò
  íåïîñðåäñòâåííî èç ñòðîê è ñòîëáöîâ òàáëèöû ñîïðÿæåííîñòè äâóõ ïðèçíàêîâ.
  Óñëîâíîå ðàñïðåäåëåíèå îòíîñèòåëüíûõ ÷àñòîò ïîëó÷àþò äåëåíèåì ÷èñåë â êàæäîé
  ñòðîêå (ñòîëáöå) íà îáùåå ÷èñëî â ñîîòâåòñòâóþùåé ñòðîêå (ñòîëáöå). 2. Â
  ðàñïðåäåëåíèè ÷àñòîò äâóõ ïðèçíàêîâ Õ è Y: -
  óñëîâíîå ðàñïðåäåëåíèå ÷àñòîò X; êîíêðåòíûå ðàñïðåäåëåíèÿ âûðàæàþò êàê
  ðàñïðåäåëåíèå X ïðè Y = ó; - óñëîâíîå ðàñïðåäåëåíèå ÷àñòîò Y;
  êîíêðåòíûå ðàñïðåäåëåíèÿ âûðàæàþò êàê ðàñïðåäåëåíèå Y ïðè Õ = õ. | en conditional frequency distribution fr distribution d’effectif conditionnelle | 
 
  | 2.26. ñðåäíåå àðèôìåòè÷åñêîå Ñóììà çíà÷åíèé, äåëåííàÿ íà èõ ÷èñëî. Ïðèìå÷àíèÿ 1.
  Òåðìèí «ñðåäíåå» îáû÷íî èñïîëüçóþò, êîãäà èìåþò â âèäó ïàðàìåòð ñîâîêóïíîñòè,
  à òåðìèí «ñðåäíåå àðèôìåòè÷åñêîå» - êîãäà èìåþò â âèäó ðåçóëüòàò âû÷èñëåíèé
  ïî äàííûì, ïîëó÷åííûì èç âûáîðîê. 2. Ñðåäíåå àðèôìåòè÷åñêîå ïðîñòîé ñëó÷àéíîé
  âûáîðêè, âçÿòîé èç ñîâîêóïíîñòè, - ýòî íåñìåùåííàÿ îöåíêà àðèôìåòè÷åñêîãî
  ñðåäíåãî ãåíåðàëüíîé ñîâîêóïíîñòè. Îäíàêî äðóãèå ôîðìóëû äëÿ îöåíêè, òàêèå
  êàê ãåîìåòðè÷åñêîå èëè ãàðìîíè÷åñêîå ñðåäíåå, ìåäèàíà èëè ìîäà, èíîãäà òîæå
  èñïîëüçóþò. | en arithmetic mean fr moyenne arithmetique; moyenne | 
 
  | 2.27. âçâåøåííîå ñðåäíåå àðèôìåòè÷åñêîå Ñóììà ïðîèçâåäåíèé êàæäîãî çíà÷åíèÿ íà åãî âåñ, äåëåííàÿ
  íà ñóììó âåñîâ, ãäå âåñà - íåîòðèöàòåëüíûå êîýôôèöèåíòû, ñâÿçàííûå ñ êàæäûì
  çíà÷åíèåì. | en arithmetic weighted mean fr moyenne arithmetique ponderee; moyenne ponderee | 
 
  | 2.28. âûáîðî÷íàÿ ìåäèàíà Åñëè n ñëó÷àéíûõ
  çíà÷åíèé óïîðÿäî÷åíû ïî âîçðàñòàíèþ è ïðîíóìåðîâàíû îò 1 äî n, òî, åñëè n íå÷åòíî,
  âûáîðî÷íàÿ ìåäèàíà ïðèíèìàåò çíà÷åíèå ñ íîìåðîì  ; åñëè n ÷åòíî,
  ìåäèàíà ëåæèò ìåæäó  -ì è  -ì çíà÷åíèÿìè è íå ìîæåò áûòü îäíîçíà÷íî îïðåäåëåíà. Ïðèìå÷àíèå - Ïðè îòñóòñòâèè äðóãèõ óêàçàíèé è ÷åòíîì n çà
  âûáîðî÷íóþ ìåäèàíó ìîæíî ïðèíÿòü ñðåäíåå àðèôìåòè÷åñêîå ýòèõ äâóõ çíà÷åíèé. | en sample median fr mediane | 
 
  | 2.29. ñåðåäèíà
  ðàçìàõà (âûáîðêè) Ñðåäíåå àðèôìåòè÷åñêîå
  ìåæäó íàèáîëüøèì è íàèìåíüøèì íàáëþäåííûìè çíà÷åíèÿìè êîëè÷åñòâåííîãî
  ïðèçíàêà. | en mid-range fr milieu de l’etendue | 
 
  | 2.30. ðàçìàõ
  (âûáîðêè) Ðàçíîñòü ìåæäó
  íàèáîëüøèì è íàèìåíüøèì íàáëþäåííûìè çíà÷åíèÿìè êîëè÷åñòâåííîãî ïðèçíàêà â
  âûáîðêå. | en range fr etendue | 
 
  | 2.31. ñðåäíèé
  ðàçìàõ (âûáîðîê) Ñðåäíåå àðèôìåòè÷åñêîå
  ðàçìàõîâ ìíîæåñòâà âûáîðîê îäèíàêîâîãî îáúåìà. | en average range;
  mean range fr etendue moyenne | 
 
  | 2.32. ñðåäíåå
  îòêëîíåíèå (âûáîðêè) Ñðåäíåå àðèôìåòè÷åñêîå
  îòêëîíåíèå îò íà÷àëà êîîðäèíàò, êîãäà âñå îòêëîíåíèÿ èìåþò ïîëîæèòåëüíûé
  çíàê. Ïðèìå÷àíèå - Îáû÷íî
  âûáðàííîå íà÷àëî îòñ÷åòà ïðåäñòàâëÿåò ñîáîé ñðåäíåå àðèôìåòè÷åñêîå, õîòÿ
  ñðåäíåå îòêëîíåíèå ìèíèìèçèðóåòñÿ, êîãäà çà íà÷àëî îòñ÷åòà ïðèíèìàþò ìåäèàíó. | en mean deviation fr ecart moyen | 
 
  | 2.33. âûáîðî÷íàÿ
  äèñïåðñèÿ Îäíà èç ìåð ðàññåÿíèÿ,
  ïðåäñòàâëÿþùàÿ ñîáîé ñóììó êâàäðàòîâ îòêëîíåíèé íàáëþäåíèé îò èõ ñðåäíåãî
  àðèôìåòè÷åñêîãî, äåëåííàÿ íà ÷èñëî íàáëþäåíèé ìèíóñ åäèíèöà. Ïðèìå÷àíèÿ 1. Äëÿ ñåðèè èç n íàáëþäåíèé õ1,
  x2, ..., õn ñî ñðåäíèì àðèôìåòè÷åñêèì 
 âûáîðî÷íàÿ äèñïåðñèÿ 
 2. Âûáîðî÷íàÿ äèñïåðñèÿ - ýòî
  íåñìåùåííàÿ îöåíêà äèñïåðñèè ñîâîêóïíîñòè. 3. Âûáîðî÷íàÿ äèñïåðñèÿ - ýòî öåíòðàëüíûé ìîìåíò âòîðîãî ïîðÿäêà, êðàòíûé
  n/(n - 1) (ï. 2.39, ïðèìå÷àíèå). | en sampling
  variance fr variance | 
 
  | 2.34. âûáîðî÷íîå
  ñòàíäàðòíîå îòêëîíåíèå Ïîëîæèòåëüíûé êâàäðàòíûé
  êîðåíü èç âûáîðî÷íîé äèñïåðñèè. Ïðèìå÷àíèå - Âûáîðî÷íîå
  ñòàíäàðòíîå îòêëîíåíèå - ýòî ñìåùåííàÿ îöåíêà ñòàíäàðòíîãî îòêëîíåíèÿ
  ñîâîêóïíîñòè. | en sampling
  standard deviation fr ecart-type | 
 
  | 2.35. âûáîðî÷íûé
  êîýôôèöèåíò âàðèàöèè (Íäï. îòíîñèòåëüíîå ñòàíäàðòíîå îòêëîíåíèå) Îòíîøåíèå âûáîðî÷íîãî
  ñòàíäàðòíîãî îòêëîíåíèÿ ê ñðåäíåìó àðèôìåòè÷åñêîìó äëÿ íåîòðèöàòåëüíûõ
  ïðèçíàêîâ. Ïðèìå÷àíèå - Ýòî
  îòíîøåíèå ìîæíî âûðàçèòü â ïðîöåíòàõ. | en sample
  coefficient of variation fr coefficient de variation | 
 
  | 2.36. âûáîðî÷íûé ìîìåíò ïîðÿäêà q
  îòíîñèòåëüíî íà÷àëà îòñ÷åòà Ñðåäíåå àðèôìåòè÷åñêîå íàáëþäàåìûõ çíà÷åíèé â
  ñòåïåíè q â ðàñïðåäåëåíèè åäèíñòâåííîãî ïðèçíàêà: 
 ãäå n - îáùåå
  ÷èñëî íàáëþäåíèé. Ïðèìå÷àíèå - Ìîìåíò ïåðâîãî ïîðÿäêà - ýòî ñðåäíåå
  àðèôìåòè÷åñêîå íàáëþäàåìûõ çíà÷åíèé. | en sample moment of order q about the origin fr moment d’ordre q par rapport a l’origine | 
 
  | 2.37. âûáîðî÷íûé öåíòðàëüíûé ìîìåíò ïîðÿäêà q Ñðåäíåå àðèôìåòè÷åñêîå ðàçíîñòåé ìåæäó íàáëþäàåìûìè
  çíà÷åíèÿìè õi è èõ
  ñðåäíèì àðèôìåòè÷åñêèì  â ñòåïåíè q
  â ðàñïðåäåëåíèè åäèíñòâåííîãî ïðèçíàêà: 
 ãäå n - ÷èñëî
  íàáëþäåíèé. Ïðèìå÷àíèå - Âûáîðî÷íûé öåíòðàëüíûé ìîìåíò ïåðâîãî ïîðÿäêà
  ðàâåí íóëþ. | en sample central moment of order q fr moment centre d’ordre q | 
 
  | 2.38. âûáîðî÷íûé ñîâìåñòíûé ìîìåíò ïîðÿäêîâ q
  è s îòíîñèòåëüíî íà÷àëà îòñ÷åòà  ñîâìåñòíîì ðàñïðåäåëåíèè äâóõ ïîêàçàòåëåé -
  ñðåäíåå àðèôìåòè÷åñêîå ïðîèçâåäåíèé xi â ñòåïåíè q
  è yi â ñòåïåíè s
  äëÿ âñåõ íàáëþäàåìûõ ïàð çíà÷åíèé (xi, ói) 
 ãäå n - ÷èñëî
  íàáëþäàåìûõ ïàð. Ïðèìå÷àíèÿ 1.
  Âûáîðî÷íûé ñîâìåñòíûé ìîìåíò ïîðÿäêîâ q è s - ýòî îäèí èç
  ìîìåíòîâ ïîðÿäêà (q + s). 2. Âûáîðî÷íûé ìîìåíò ïîðÿäêîâ 1 è 0 - ýòî ñðåäíåå
  àðèôìåòè÷åñêîå ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ ÷àñòîò X, à ìîìåíò ïîðÿäêîâ
  0 è 1 - ñðåäíåå àðèôìåòè÷åñêîå ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ ÷àñòîò Y. | en sample joint moment of orders q and s about the
  origin fr moment d’ordres q et s par rapport a l’origine | 
 
  | 2.39. âûáîðî÷íûé ñîâìåñòíûé öåíòðàëüíûé
  ìîìåíò ïîðÿäêîâ q è s  ñîâìåñòíîì ðàñïðåäåëåíèè äâóõ ïðèçíàêîâ -
  ñðåäíåå àðèôìåòè÷åñêîå ïðîèçâåäåíèé ðàçíîñòè ìåæäó xi è åãî ñðåäíèì àðèôìåòè÷åñêèì çíà÷åíèåì  â ñòåïåíè q
  è ðàçíîñòè ìåæäó ói è åãî ñðåäíèì
  àðèôìåòè÷åñêèì çíà÷åíèåì  â ñòåïåíè s äëÿ âñåõ íàáëþäàåìûõ ïàð (xi, ói): 
 ãäå n - ÷èñëî
  íàáëþäàåìûõ ïàð. Ïðèìå÷àíèå - Âûáîðî÷íûé öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 2 è 0 -
  ýòî âûáîðî÷íàÿ äèñïåðñèÿ ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ ÷àñòîò X,
  óìíîæåííàÿ íà (n - 1)/n, à
  âûáîðî÷íûé öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 0 è 2 - âûáîðî÷íàÿ äèñïåðñèÿ
  ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ ÷àñòîò Y, óìíîæåííàÿ íà (n - 1)/n. | en sample joint central moment of orders q and s fr moment centre d’ordres q
  et s | 
 
  | 2.40. âûáîðî÷íàÿ êîâàðèàöèÿ Ñóììà ïðîèçâåäåíèé îòêëîíåíèé õ è ó
  îò èõ ñîîòâåòñòâóþùèõ ñðåäíèõ àðèôìåòè÷åñêèõ, äåëåííàÿ íà ÷èñëî íàáëþäàåìûõ
  ïàð áåç åäèíèöû: 
 ãäå n - ÷èñëî
  íàáëþäàåìûõ ïàð. Ïðèìå÷àíèå - Âûáîðî÷íàÿ êîâàðèàöèÿ - ýòî íåñìåùåííàÿ îöåíêà
  êîâàðèàöèè ñîâîêóïíîñòè. | en sample covariance fr covariance | 
 
  | 2.41. âûáîðî÷íûé êîýôôèöèåíò êîððåëÿöèè ×àñòíîå îò äåëåíèÿ âûáîðî÷íîé êîâàðèàöèè äâóõ
  ïîêàçàòåëåé íà ïðîèçâåäåíèå èõ âûáîðî÷íûõ ñòàíäàðòíûõ îòêëîíåíèé: 
 ãäå Sxy -
  âûáîðî÷íàÿ êîâàðèàöèÿ Õ è Y; Sx è Sy - âûáîðî÷íûå ñòàíäàðòíûå îòêëîíåíèÿ Õ è Y ñîîòâåòñòâåííî. Ïðèìå÷àíèÿ 1.
  Ýòîò êîýôôèöèåíò ÷àñòî èñïîëüçóþò êàê öèôðîâîå âûðàæåíèå âçàèìíîé çàâèñèìîñòè
  ìåæäó Õ è Y â ñåðèè ïàðíûõ íàáëþäåíèé. Äëÿ ïðîâåðêè ëèíåéíîñòè
  ìîæíî ñòðîèòü äèàãðàììó ðàçáðîñà. 2. Åãî
  çíà÷åíèÿ âñåãäà ëåæàò ìåæäó ìèíóñ 1 è ïëþñ 1. Êîãäà âûáîðî÷íûé êîýôôèöèåíò
  êîððåëÿöèè ðàâåí îäíîìó èç óêàçàííûõ ïðåäåëîâ, ýòî îçíà÷àåò, ÷òî ñóùåñòâóåò
  òî÷íàÿ ëèíåéíàÿ çàâèñèìîñòü â ñåðèè ïàðíûõ íàáëþäåíèé. 3. Ýòîò âûáîðî÷íûé êîýôôèöèåíò êîððåëÿöèè
  ïðèìåíÿþò äëÿ èçìåðÿåìûõ ïðèçíàêîâ; äëÿ ðàíãîâûõ äàííûõ èñïîëüçóþò äðóãèå
  êîýôôèöèåíòû êîððåëÿöèè, òàêèå êàê êîýôôèöèåíòû Ñïèðìåíà è Êåíäàëëà. | en sample correlation coefficient fr coefficient de correlation | 
 
  | 2.42. êðèâàÿ ðåãðåññèè (Y ïî Õ äëÿ âûáîðêè) Äëÿ âûáîðêè n ïàð
  íàáëþäåíèé äâóõ ïîêàçàòåëåé Õ è Y - êðèâàÿ
  ðåãðåññèè Y îò X îòîáðàæàåò çàâèñèìîñòü ôóíêöèè Y îò X. | en regression curve fr courbe de regression | 
 
  | 2.43. ïîâåðõíîñòü ðåãðåññèè (Z ïî Õ
  è Y äëÿ
  âûáîðêè) Äëÿ âûáîðêè ï íàáëþäåíèé êàæäîãî èç òðåõ
  ïîêàçàòåëåé X, Y è Z
  - ïîâåðõíîñòü ðåãðåññèè Z îò Õ è Y îòîáðàæàåò
  çàâèñèìîñòü ôóíêöèè Z îò X è Y. Ïðèìå÷àíèå - Âûøåóêàçàííûå îïðåäåëåíèÿ ìîæíî ðàñïðîñòðàíèòü
  òàêæå íà ñëó÷àé áîëåå òðåõ ïîêàçàòåëåé. | en regression surface fr surface de regression | 
 
  | 2.44. âûáîðî÷íûé êîýôôèöèåíò ðåãðåññèè Êîýôôèöèåíò ïðè ïåðåìåííîé â óðàâíåíèè êðèâîé
  èëè ïîâåðõíîñòè ðåãðåññèè. | en sample regression coefficient fr coefficient de regression | 
 
  | 2.45. ñòàòèñòèêà Ôóíêöèÿ îò âûáîðî÷íûõ çíà÷åíèé. Ïðèìå÷àíèå - Ñòàòèñòèêà êàê ôóíêöèÿ îò âûáîðî÷íûõ çíà÷åíèé
  - ñëó÷àéíàÿ âåëè÷èíà, êîòîðàÿ ìîæåò ïðèíèìàòü ðàçëè÷íûå çíà÷åíèÿ îò âûáîðêè ê
  âûáîðêå. Çíà÷åíèå ñòàòèñòèêè, ïîëó÷àåìîå ïðè èñïîëüçîâàíèè íàáëþäàåìûõ
  çíà÷åíèé, êàê èõ ôóíêöèÿ ìîæåò áûòü èñïîëüçîâàíî ïðè ïðîâåðêå ñòàòèñòè÷åñêèõ
  ãèïîòåç èëè êàê îöåíêà ïàðàìåòðà ñîâîêóïíîñòè, íàïðèìåð ñðåäíåãî
  àðèôìåòè÷åñêîãî èëè ñòàíäàðòíîãî îòêëîíåíèÿ. | en statistics fr statistique | 
 
  | 2.46. ïîðÿäêîâàÿ ñòàòèñòèêà Êàæäîå èç óïîðÿäî÷åííûõ âûáîðî÷íûõ çíà÷åíèé,
  ðàñïîëîæåííûõ â íåóáûâàþùåì ïîðÿäêå. Ïðèìå÷àíèÿ 1. Â
  áîëåå îáùåì âûðàæåíèè âñÿêóþ ñòàòèñòèêó, îñíîâàííóþ íà ïîðÿäêîâûõ ñòàòèñòèêàõ
  â ýòîì óçêîì ñìûñëå, òàêæå íàçûâàþò ïîðÿäêîâîé ñòàòèñòèêîé. 2. k-e çíà÷åíèå â íåóáûâàþùåé
  ïîñëåäîâàòåëüíîñòè íàáëþäåíèé x|k| - ýòî çíà÷åíèå ñëó÷àéíîé âåëè÷èíû X|k|, íàçûâàåìîå k-é ïîðÿäêîâîé ñòàòèñòèêîé.  âûáîðêå îáúåìà n
  íàèìåíüøåå íàáëþäàåìîå çíà÷åíèå x|1| è íàèáîëüøåå çíà÷åíèå x|n| - ýòî çíà÷åíèÿ ñëó÷àéíûõ âåëè÷èí X|1| è X|n| - ïåðâàÿ è n-ÿ
  ïîðÿäêîâûå ñòàòèñòèêè ñîîòâåòñòâåííî. Ðàçìàõ x|n| - x|1| - ýòî çíà÷åíèå ïîðÿäêîâîé ñòàòèñòèêè X|n| - X|1|. | en order statistics fr statistique d’ordre | 
 
  | 2.47. òðåíä Òåíäåíöèÿ ê âîçðàñòàíèþ èëè óáûâàíèþ íàáëþäàåìûõ
  çíà÷åíèé, íàíåñåííûõ íà ãðàôèê â ïîðÿäêå èõ ïîëó÷åíèÿ ïîñëå èñêëþ÷åíèÿ
  ñëó÷àéíûõ îøèáîê è öèêëè÷åñêèõ ýôôåêòîâ. | en trend fr tendance | 
 
  | 2.48. ñåðèÿ à) Ïîÿâëåíèå â ðÿäàõ íàáëþäåíèé ïî êà÷åñòâåííîìó
  ïðèçíàêó íåïðåðûâàþùèõñÿ ðÿäîâ îäíîãî è òîãî æå çíà÷åíèÿ ïðèçíàêà. b) Ïîñëåäîâàòåëüíûé íàáîð ìîíîòîííî âîçðàñòàþùèõ
  èëè ìîíîòîííî óáûâàþùèõ çíà÷åíèé â ðÿäàõ íàáëþäåíèé ïî êîëè÷åñòâåííîìó
  ïðèçíàêó. Ïðèìå÷àíèå - Ïîñëåäîâàòåëüíûé íàáîð ìîíîòîííî âîçðàñòàþùèõ çíà÷åíèé
  íàçûâàþò âîçðàñòàþùåé ñåðèåé, à ìîíîòîííî óáûâàþùèõ çíà÷åíèé - óáûâàþùåé
  ñåðèåé. | en run fr suite | 
 
  | 2.49. îöåíèâàíèå (ïàðàìåòðà) Îïåðàöèÿ îïðåäåëåíèÿ íà îñíîâå âûáîðî÷íûõ äàííûõ
  ÷èñëîâûõ çíà÷åíèé ïàðàìåòðîâ ðàñïðåäåëåíèÿ, ïðèíÿòîãî â êà÷åñòâå ñòàòèñòè÷åñêîé
  ìîäåëè ãåíåðàëüíîé ñîâîêóïíîñòè, èç êîòîðîé èçâëå÷åíà âûáîðêà. Ïðèìå÷àíèå - Ðåçóëüòàò ýòîé îïåðàöèè ìîæåò áûòü âûðàæåí êàê
  îäíèì ÷èñëîâûì çíà÷åíèåì, òàê è äîâåðèòåëüíûì èíòåðâàëîì. | en estimation fr estimation | 
 
  | 2.50. îöåíêà Ñòàòèñòèêà, èñïîëüçóåìàÿ äëÿ îöåíèâàíèÿ
  ïàðàìåòðà ñîâîêóïíîñòè. | en estimator fr estimateur | 
 
  | 2.51. çíà÷åíèå îöåíêè Çíà÷åíèå ïàðàìåòðà, ïîëó÷åííîå â ðåçóëüòàòå
  îöåíèâàíèÿ. | en estimate fr estimation (resultat) | 
 
  | 2.52. ïîãðåøíîñòü îöåíêè Ðàçíîñòü (Ò - q) ïðè
  îöåíèâàíèè ïàðàìåòðà, ãäå T îáîçíà÷àåò
  ðåçóëüòàò îöåíêè, à q -
  îöåíèâàåìûé ïàðàìåòð. Ïðèìå÷àíèå - Ïîãðåøíîñòü ïðè îöåíèâàíèè ìîæåò âêëþ÷àòü â
  ñåáÿ îäèí èëè íåñêîëüêî èç ñëåäóþùèõ êîìïîíåíòîâ: -
  ïîãðåøíîñòü âûáîðî÷íîãî ìåòîäà; -
  ïîãðåøíîñòü èçìåðåíèÿ; -
  îêðóãëåíèå çíà÷åíèé èëè ðàçäåëåíèå íà êëàññû; - äðóãèå ïîãðåøíîñòè. | en estimator error fr erreur d’estimation | 
 
  | 2.53. ïîãðåøíîñòü âûáîðî÷íîãî ìåòîäà ×àñòü ïîãðåøíîñòè ïðè îöåíèâàíèè, îáóñëîâëåííàÿ òîëüêî
  òåì, ÷òî îáúåì âûáîðêè ìåíüøå, ÷åì îáúåì ãåíåðàëüíîé ñîâîêóïíîñòè. | en sampling error fr erreur d’echantillonnage | 
 
  | 2.54. ñìåùåíèå îöåíêè Ðàçíîñòü ìåæäó ìàòåìàòè÷åñêèì îæèäàíèåì îöåíêè è
  çíà÷åíèåì îöåíèâàåìîãî ïàðàìåòðà. | en bias of estimator fr biais d’un estimateur | 
 
  | 2.55. íåñìåùåííàÿ îöåíêà Îöåíêà ñî ñìåùåíèåì, ðàâíûì íóëþ. | en unbiased estimator fr estimateur sans biais | 
 
  | 2.56. ñòàíäàðòíàÿ îøèáêà; ñðåäíåêâàäðàòè÷íàÿ
  îøèáêà Ñòàíäàðòíîå îòêëîíåíèå îöåíêè. | en standard error fr erreur-type | 
 
  | 2.57. äâóñòîðîííèé äîâåðèòåëüíûé èíòåðâàë Åñëè T1 è T2 - äâå ôóíêöèè îò íàáëþäàåìûõ
  çíà÷åíèé òàêèõ, ÷òî äëÿ îöåíêè ïàðàìåòðà ðàñïðåäåëåíèÿ ñîâîêóïíîñòè q
  âåðîÿòíîñòü  ðàâíà (1 - a), ãäå (1 -
  a) - êîíñòàíòà,
  ïîëîæèòåëüíàÿ è ìåíüøå 1, òî èíòåðâàë ìåæäó T1 è T2 - ýòî äâóñòîðîííèé
  äîâåðèòåëüíûé èíòåðâàë äëÿ q ïðè
  äîâåðèòåëüíîé âåðîÿòíîñòè (1 - a). Ïðèìå÷àíèÿ 1.
  Ãðàíèöû T1 è T2 äîâåðèòåëüíîãî èíòåðâàëà - ýòî ñòàòèñòèêè (2.45), êîòîðûå â îáùèõ
  ïðåäïîëîæåíèÿõ ïðèíèìàþò ðàçëè÷íûå çíà÷åíèÿ îò âûáîðêè ê âûáîðêå. 2.  äëèííîì ðÿäó âûáîðîê îòíîñèòåëüíàÿ ÷àñòîòà
  ñëó÷àåâ, êîãäà äîâåðèòåëüíûé èíòåðâàë íàêðûâàåò èñòèííîå çíà÷åíèå ïàðàìåòðà
  ñîâîêóïíîñòè q, áîëüøå èëè ðàâíà (1 - a). | en two-sided confidence interval fr intervalle de confiance bilateral | 
 
  | 2.58. îäíîñòîðîííèé äîâåðèòåëüíûé èíòåðâàë Åñëè Ò - ôóíêöèÿ îò íàáëþäàåìûõ çíà÷åíèé
  òàêàÿ, ÷òî äëÿ îöåíêè ïàðàìåòðà ðàñïðåäåëåíèÿ ñîâîêóïíîñòè q
  âåðîÿòíîñòü  èëè âåðîÿòíîñòü  ðàâíà (1 - a), ãäå (1 -
  a) -
  êîíñòàíòà, ïîëîæèòåëüíàÿ è ìåíüøå 1, òî èíòåðâàë îò íàèìåíüøåãî âîçìîæíîãî
  çíà÷åíèÿ q äî Ò
  èëè èíòåðâàë îò T äî
  íàèáîëüøåãî âîçìîæíîãî çíà÷åíèÿ q - ýòî
  îäíîñòîðîííèé äîâåðèòåëüíûé èíòåðâàë äëÿ q ïðè
  äîâåðèòåëüíîé âåðîÿòíîñòè (1 - a). Ïðèìå÷àíèÿ 1.
  Ãðàíèöà T äîâåðèòåëüíîãî èíòåðâàëà - ýòî ñòàòèñòèêà,
  êîòîðàÿ â îáùèõ ïðåäïîëîæåíèÿõ ïðèíèìàåò ðàçëè÷íûå çíà÷åíèÿ îò âûáîðêè ê
  âûáîðêå. 2. Ñì. ï.
  2.57, ïðèìå÷àíèå 2. | en one-sided confidence interval fr intervalle de confiance unilateral | 
 
  | 2.59. äîâåðèòåëüíàÿ âåðîÿòíîñòü; óðîâåíü
  äîâåðèÿ Âåëè÷èíà (1 - a) -
  âåðîÿòíîñòü, ñâÿçàííàÿ ñ äîâåðèòåëüíûì èíòåðâàëîì èëè ñî ñòàòèñòè÷åñêè
  íàêðûâàþùèì èíòåðâàëîì. Ïðèìå÷àíèå - Âåëè÷èíó (1 - a) ÷àñòî âûðàæàþò â ïðîöåíòàõ. | en confidence coefficient; confidence level fr niveau de confiance | 
 
  | 2.60. äîâåðèòåëüíàÿ ãðàíèöà Êàæäàÿ èç ãðàíèö, íèæíÿÿ T1, âåðõíÿÿ T2 äëÿ äâóñòîðîííåãî
  äîâåðèòåëüíîãî èíòåðâàëà èëè ãðàíèöà Ò äëÿ îäíîñòîðîííåãî èíòåðâàëà. | en confidence limit fr limite de confiance | 
 
  | 2.61. òîëåðàíòíûé èíòåðâàë Èíòåðâàë, äëÿ êîòîðîãî ìîæíî óòâåðæäàòü ñ äàííûì
  óðîâíåì äîâåðèÿ, ÷òî îí ñîäåðæèò, ïî êðàéíåé ìåðå, çàäàííóþ äîëþ îïðåäåëåííîé
  ñîâîêóïíîñòè. Ïðèìå÷àíèå - Åñëè îïðåäåëåíû îáå ãðàíèöû ïî ñòàòèñòè÷åñêèì
  äàííûì, òî èíòåðâàë äâóñòîðîííèé. Åñëè îäíà èç äâóõ ãðàíèö ïðåäñòàâëÿåò ñîáîé
  áåñêîíå÷íîñòü èëè îãðàíè÷åíèå îáëàñòè îïðåäåëåíèÿ ñëó÷àéíîé âåëè÷èíû, òî
  èíòåðâàë îäíîñòîðîííèé. | en statistical coverage interval fr intervalle statistique de
  dispersion | 
 
  | 2.62. òîëåðàíòíûå ãðàíèöû Äëÿ äâóñòîðîííåãî ñòàòèñòè÷åñêè íàêðûâàþùåãî
  èíòåðâàëà - íèæíÿÿ è âåðõíÿÿ ãðàíèöû ýòîãî èíòåðâàëà; äëÿ îäíîñòîðîííåãî
  ñòàòèñòè÷åñêè íàêðûâàþùåãî èíòåðâàëà - çíà÷åíèå ñòàòèñòèêè, îãðàíè÷èâàþùåé
  ýòîò èíòåðâàë. | en statistical coverage limits fr limites statistiques de dispersion | 
 
  | 2.63. êðèòåðèé ñîãëàñèÿ ðàñïðåäåëåíèÿ Ìåðà ñîîòâåòñòâèÿ ìåæäó íàáëþäàåìûì ðàñïðåäåëåíèåì
  è òåîðåòè÷åñêèì ðàñïðåäåëåíèåì, âûáðàííûì àïðèîðè ëèáî ïîäîáðàííûì ïî
  ðåçóëüòàòàì íàáëþäåíèé. | en goodness of fit of a distribution fr adequation d’une distribution; validite de l’ajustement | 
 
  | 2.64. âûáðîñû Íàáëþäåíèÿ â âûáîðêå, îòëè÷àþùèåñÿ îò îñòàëüíûõ
  ïî âåëè÷èíå íàñòîëüêî, ÷òî âîçíèêàåò ïðåäïîëîæåíèå, ÷òî îíè ïðèíàäëåæàò
  äðóãîé ñîâîêóïíîñòè èëè ïîëó÷åíû â ðåçóëüòàòå îøèáêè èçìåðåíèÿ. | en outliers fr valeurs aberrantes | 
 
  | 2.65. ñòàòèñòè÷åñêèé êðèòåðèé Ñòàòèñòè÷åñêèé ìåòîä ïðèíÿòèÿ ðåøåíèé î òîì,
  ñòîèò ëè îòâåðãíóòü íóëåâóþ ãèïîòåçó â ïîëüçó àëüòåðíàòèâíîé èëè íåò. Ïðèìå÷àíèÿ 1.
  Ðåøåíèå î íóëåâîé ãèïîòåçå ïðèíèìàþò èñõîäÿ èç çíà÷åíèé ñîîòâåòñòâóþùèõ
  ñòàòèñòèê, ëåæàùèõ â îñíîâå ñòàòèñòè÷åñêèõ êðèòåðèåâ èëè ðàññ÷èòàííûõ ïî
  ðåçóëüòàòàì íàáëþäåíèé. Òàê êàê ñòàòèñòèêè - ñëó÷àéíûå âåëè÷èíû, ñóùåñòâóåò
  íåêîòîðûé ðèñê ïðèíÿòèÿ îøèáî÷íîãî ðåøåíèÿ (ï.
  2.75 è ï.
  2.77). 2. Êðèòåðèé àïðèîðè ïðåäïîëàãàåò, ÷òî ïðîâåðÿþò
  íåêîòîðûå ïðåäïîëîæåíèÿ, íàïðèìåð ïðåäïîëîæåíèå î íåçàâèñèìîñòè íàáëþäåíèé,
  ïðåäïîëîæåíèå î íîðìàëüíîñòè è ò.ä. | en statistical test fr test statistique | 
 
  | 2.66. íóëåâàÿ ãèïîòåçà è àëüòåðíàòèâíàÿ
  ãèïîòåçà Óòâåðæäåíèÿ îòíîñèòåëüíî îäíîãî èëè íåñêîëüêèõ
  ïàðàìåòðîâ èëè î ðàñïðåäåëåíèè, êîòîðûå ïðîâåðÿþò ñ ïîìîùüþ ñòàòèñòè÷åñêîãî
  êðèòåðèÿ. Ïðèìå÷àíèÿ 1.
  Íóëåâàÿ ãèïîòåçà (Í0) - ïðåäïîëîæåíèå, îáû÷íî ñëîæíîå,
  îòíîñÿò ê óòâåðæäåíèþ, ïîäâåðãàåìîìó ïðîâåðêå, â òî âðåìÿ êàê àëüòåðíàòèâíóþ
  ãèïîòåçó (Í1) îòíîñÿò ê óòâåðæäåíèþ, êîòîðîå áóäåò ïðèíÿòî,
  åñëè íóëåâóþ ãèïîòåçó îòâåðãàþò. 2.
  Ïðîâåðêà ãèïîòåçû î òîì, ÷òî ìàòåìàòè÷åñêîå îæèäàíèå m ñëó÷àéíîé âåëè÷èíû Õ â ñîâîêóïíîñòè íå
  ìåíüøå, ÷åì çàäàííîå çíà÷åíèå m0: 
 3.
  Ïðîâåðêà ãèïîòåçû î òîì, ÷òî äîëè íåñîîòâåòñòâóþùèõ äåòàëåé â äâóõ ïàðòèÿõ ð1
  è p2 îäèíàêîâû (íåîäèíàêîâû): 
 4. Ïðîâåðêà ãèïîòåçû î òîì, ÷òî ñëó÷àéíàÿ
  âåëè÷èíà X èìååò íîðìàëüíîå ðàñïðåäåëåíèå ñ íåèçâåñòíûìè ïàðàìåòðàìè.
  Àëüòåðíàòèâíàÿ ãèïîòåçà - ðàñïðåäåëåíèå íå íîðìàëüíî. | en null hypothesis and alternative hypothesis fr hypothese nulle et hypothese alternative | 
 
  | 2.67. ïðîñòàÿ ãèïîòåçà Ãèïîòåçà, êîòîðàÿ ïîëíîñòüþ çàäàåò ðàñïðåäåëåíèå
  ñîâîêóïíîñòè. | en simple hypothesis fr hypothese simple | 
 
  | 2.68. ñëîæíàÿ ãèïîòåçà Ãèïîòåçà, êîòîðàÿ íå ïîëíîñòüþ çàäàåò
  ðàñïðåäåëåíèå ñîâîêóïíîñòè. Ïðèìå÷àíèÿ 1. Ýòî
  îáû÷íî ãèïîòåçà, êîòîðàÿ âêëþ÷àåò â ñåáÿ áåñêîíå÷íóþ ñèñòåìó ïðîñòûõ ãèïîòåç. 2.  ïðåäïîëîæåíèè
  íîðìàëüíîãî ðàñïðåäåëåíèÿ ãèïîòåçà m = m0 áóäåò ïðîñòîé, åñëè ñòàíäàðòíîå îòêëîíåíèå ñîâîêóïíîñòè èçâåñòíî, íî îíà
  áóäåò ñëîæíîé, åñëè îíî íåèçâåñòíî. 3. Âñå ãèïîòåçû èç ïðèìå÷àíèé, ïðèâåäåííûõ â ï.
  2.66, ñëîæíûå. | en composite hypothesis fr hypothese composite | 
 
  | 2.69. ñâîáîäíûé îò ðàñïðåäåëåíèÿ êðèòåðèé Êðèòåðèé, â êîòîðîì ôóíêöèÿ ðàñïðåäåëåíèÿ
  ñòàòèñòèêè, ëåæàùåé â îñíîâå êðèòåðèÿ, íå çàâèñèò îò ôóíêöèè ðàñïðåäåëåíèÿ
  íàáëþäåíèé | en distribution-free test fr test non parametrique | 
 
  | 2.70. óðîâåíü çíà÷èìîñòè (êðèòåðèÿ) Çàäàííîå çíà÷åíèå âåðõíåãî ïðåäåëà âåðîÿòíîñòè
  îøèáêè ïåðâîãî ðîäà. Ïðèìå÷àíèå- Óðîâåíü çíà÷èìîñòè îáû÷íî îáîçíà÷àþò à. | en significance level fr niveau de signification | 
 
  | 2.71. êðèòè÷åñêàÿ îáëàñòü Ìíîæåñòâî âîçìîæíûõ çíà÷åíèé ñòàòèñòèêè, ëåæàùåé
  â îñíîâå êðèòåðèÿ, äëÿ êîòîðîãî îòâåðãàþò íóëåâóþ ãèïîòåçó. Ïðèìå÷àíèÿ 1.
  Êðèòè÷åñêèå îáëàñòè îïðåäåëÿþò òàêèì îáðàçîì, ÷òî åñëè íóëåâàÿ ãèïîòåçà
  âåðíà, âåðîÿòíîñòü åå îòáðàñûâàíèÿ ðàâíà çàäàííîìó çíà÷åíèþ a, îáû÷íî ìàëîìó, íàïðèìåð 5 % èëè 1 %. 2.
  Êëàññè÷åñêèé ñïîñîá ïðîâåðêè íóëåâîé ãèïîòåçû, îòíîñÿùèéñÿ ê ìàòåìàòè÷åñêîìó
  îæèäàíèþ íîðìàëüíîãî ðàñïðåäåëåíèÿ ñ èçâåñòíûì ñòàíäàðòíûì îòêëîíåíèåì s, H0 (m ³ m0) ïðîòèâ àëüòåðíàòèâû H1 (m < m0), - èñïîëüçîâàíèå ñòàòèñòèêè  âûáîðî÷íîãî
  ñðåäíåãî àðèôìåòè÷åñêîãî. Êðèòè÷åñêàÿ
  îáëàñòü - ýòî ìíîæåñòâî çíà÷åíèé ñòàòèñòèêè, ìåíüøèõ ÷åì 
 ãäå n -
  îáúåì âûáîðêè; m1-a - ýòî êâàíòèëü óðîâíÿ (1 - a) ñòàíäàðòèçîâàííîé íîðìàëüíîé ñëó÷àéíîé
  âåëè÷èíû. Åñëè ðàññ÷èòàííîå çíà÷åíèå  ìåíüøå À,
  ãèïîòåçó Í0 îòâåðãàþò.  ïðîòèâíîì ñëó÷àå - Í0
  íå îòâåðãàþò (ïðèíèìàþò). | en critical region fr region critique | 
 
  | 2.72. êðèòè÷åñêîå çíà÷åíèå Çíà÷åíèå, îãðàíè÷èâàþùåå êðèòè÷åñêóþ îáëàñòü. | en critical value fr valeur critique | 
 
  | 2.73. îäíîñòîðîííèé êðèòåðèé Êðèòåðèé, â êîòîðîì èñïîëüçóåìàÿ ñòàòèñòèêà
  îäíîìåðíà, à êðèòè÷åñêàÿ îáëàñòü âêëþ÷àåò â ñåáÿ ìíîæåñòâî çíà÷åíèé, ìåíüøèõ êðèòè÷åñêîãî
  çíà÷åíèÿ, èëè ìíîæåñòâî çíà÷åíèé, áîëüøèõ êðèòè÷åñêîãî çíà÷åíèÿ. | en one-sided test fr test unilateral | 
 
  | 2.74. äâóñòîðîííèé êðèòåðèé Êðèòåðèé, â êîòîðîì èñïîëüçóåìàÿ ñòàòèñòèêà îäíîìåðíà,
  à êðèòè÷åñêàÿ îáëàñòü ñîñòîèò èç ìíîæåñòâà çíà÷åíèé, ìåíüøèõ ïåðâîãî
  êðèòè÷åñêîãî çíà÷åíèÿ, è ìíîæåñòâà çíà÷åíèé, áîëüøèõ âòîðîãî êðèòè÷åñêîãî
  çíà÷åíèÿ. Ïðèìå÷àíèå - Âûáîð ìåæäó îäíîñòîðîííèì è äâóñòîðîííèì
  êðèòåðèÿìè îïðåäåëÿåòñÿ àëüòåðíàòèâíîé ãèïîòåçîé.  ïðèìå÷àíèè, ïðèâåäåííîì â
  ï. 2.71, êðèòåðèé îäíîñòîðîííèé, à êðèòè÷åñêîå çíà÷åíèå
  ðàâíî À. | en two-sided test fr test bilateral | 
 
  | 2.75. îøèáêà ïåðâîãî ðîäà Îøèáêà, ñîñòîÿùàÿ â îòáðàñûâàíèè íóëåâîé
  ãèïîòåçû, ïîñêîëüêó ñòàòèñòèêà ïðèíèìàåò çíà÷åíèå, ïðèíàäëåæàùåå êðèòè÷åñêîé
  îáëàñòè, â òî âðåìÿ êàê ýòà íóëåâàÿ ãèïîòåçà âåðíà. | en error of the first kind fr erreur de premiere espece | 
 
  | 2.76. âåðîÿòíîñòü îøèáêè ïåðâîãî ðîäà Âåðîÿòíîñòü äîïóñòèòü îøèáêó ïåðâîãî ðîäà. Ïðèìå÷àíèÿ 1. Îíà
  âñåãäà ìåíüøå óðîâíÿ çíà÷èìîñòè êðèòåðèÿ èëè ðàâíà åìó. 2.  ïðèìå÷àíèè 2 ê ï.
  2.71 îøèáêà ïåðâîãî ðîäà ñîñòîèò â îòáðàñûâàíèè H0 (m < m0), ïîòîìó ÷òî  ìåíüøå À, â
  òî âðåìÿ êàê íà ñàìîì äåëå m ðàâíî èëè ïðåâûøàåò m0. Âåðîÿòíîñòü òàêîé îøèáêè ðàâíà a ïðè m = m0 è óìåíüøàåòñÿ ñ óâåëè÷åíèåì m. | en type I error probability fr probabilite d’erreur de premiere espece | 
 
  | 2.77. îøèáêà âòîðîãî ðîäà Îøèáêà ïðèíÿòü íóëåâóþ ãèïîòåçó, ïîñêîëüêó
  ñòàòèñòèêà ïðèíèìàåò çíà÷åíèå, íå ïðèíàäëåæàùåå êðèòè÷åñêîé îáëàñòè, â òî
  âðåìÿ êàê íóëåâàÿ ãèïîòåçà íå âåðíà. | en error of the second kind fr erreur de seconde espece | 
 
  | 2.78. âåðîÿòíîñòü îøèáêè âòîðîãî ðîäà Âåðîÿòíîñòü äîïóñòèòü îøèáêó âòîðîãî ðîäà. Ïðèìå÷àíèå - Âåðîÿòíîñòü îøèáêè âòîðîãî ðîäà, îáû÷íî
  îáîçíà÷àåìàÿ b, çàâèñèò îò ðåàëüíîé ñèòóàöèè è ìîæåò áûòü
  âû÷èñëåíà ëèøü â òîì ñëó÷àå, åñëè àëüòåðíàòèâíàÿ ãèïîòåçà çàäàíà àäåêâàòíî. | en type II error probability fr probabilite d’erreur de seconde espece | 
 
  | 2.79. ìîùíîñòü êðèòåðèÿ Âåðîÿòíîñòü íåäîïóùåíèÿ îøèáêè âòîðîãî ðîäà. Ïðèìå÷àíèÿ 1. Ýòî
  âåðîÿòíîñòü îòáðàñûâàíèÿ íóëåâîé ãèïîòåçû, êîãäà îíà íå âåðíà. Åå îáû÷íî
  îáîçíà÷àþò (1 - b). 2. Â
  ïðèìå÷àíèè 2 ê ï. 2.71
  îøèáêà âòîðîãî ðîäà ñîñòîèò â ïðèíÿòèè ãèïîòåçû H0 (m ³ m0), ïîñêîëüêó  ïðåâûøàåò À,
  â òî âðåìÿ êàê íà ñàìîì äåëå m ìåíüøå m0. Âåðîÿòíîñòü b òàêîé îøèáêè çàâèñèò îò ôàêòè÷åñêîãî çíà÷åíèÿ m: ÷åì áëèæå m ê m0, òåì áëèæå ìîùíîñòü ê 1. 3.  ïðèìå÷àíèè 4 ê ï.
  2.66 ïðîâåðêà íóëåâîé ãèïîòåçû H0 (íîðìàëüíî ðàñïðåäåëåííàÿ ñîâîêóïíîñòü) ïðîòèâ
  àëüòåðíàòèâû H1 (ñîâîêóïíîñòü ñ íåíîðìàëüíûì ðàñïðåäåëåíèåì) íåâîçìîæíî âûðàçèòü b êàê ôóíêöèþ îò àëüòåðíàòèâíîé ãèïîòåçû,
  ïîñêîëüêó îíà íå îïðåäåëåíà. | en power of a test fr puissance d’un test | 
 
  | 2.80. ôóíêöèÿ ìîùíîñòè êðèòåðèÿ Ôóíêöèÿ, êîòîðàÿ îïðåäåëÿåò ìîùíîñòü êðèòåðèÿ,
  îáû÷íî îáîçíà÷àåìóþ (1 - b) èëè (1 - Pa),
  ïðè ïðîâåðêå ãèïîòåçû îòíîñèòåëüíî çíà÷åíèé ñêàëÿðíîãî ïàðàìåòðà. Ïðèìå÷àíèå - Ýòà ôóíêöèÿ, îïðåäåëÿåìàÿ äëÿ çíà÷åíèé òåõ
  ïàðàìåòðîâ, êîòîðûå îòíîñÿòñÿ ê ñîîòâåòñòâóþùèì àëüòåðíàòèâíûì ãèïîòåçàì,
  ïðåäñòàâëÿåò ñîáîé âåðîÿòíîñòü îòêëîíåíèÿ íóëåâîé ãèïîòåçû, êîãäà îíà íå
  âåðíà. | en power function of a test fr fonction de puissance d’un test | 
 
  | 2.81. êðèâàÿ ìîùíîñòè (êðèòåðèÿ) Ãðàôè÷åñêîå ïðåäñòàâëåíèå ôóíêöèè ìîùíîñòè
  êðèòåðèÿ. Ïðèìå÷àíèÿ 1. Íà ðèñóíêå
  1 ïðåäñòàâëåíà êðèâàÿ ìîùíîñòè äëÿ ïðîâåðêè
  ãèïîòåçû H0 (m ³ m0) ïðîòèâ àëüòåðíàòèâíîé ãèïîòåçû H1 (m < m0) â çàâèñèìîñòè îò ìàòåìàòè÷åñêîãî îæèäàíèÿ ñîâîêóïíîñòè m è óðîâíÿ çíà÷èìîñòè êðèòåðèÿ a. 
 Ðèñóíîê 1 - Êðèâàÿ
  ìîùíîñòè 1 - Pa
  - âåðîÿòíîñòü îòêëîíåíèÿ ãèïîòåçû H0; m - ìàòåìàòè÷åñêîå îæèäàíèå ñîâîêóïíîñòè 2. Íà ðèñóíêå
  2 ïðåäñòàâëåíà êðèâàÿ ìîùíîñòè êðèòåðèÿ äëÿ
  ãèïîòåçû H0 (p £ p0) ïðîòèâ H1 (p > p0) â çàâèñèìîñòè îò ð0 - äîëè
  íåñîîòâåòñòâóþùèõ åäèíèö â ïàðòèè, ïðîõîäÿùåé êîíòðîëü. 
 Ðèñóíîê 2 - Êðèâàÿ
  ìîùíîñòè 1 - Pa
  - âåðîÿòíîñòü îòêëîíåíèÿ ãèïîòåçû H0; p - äîëÿ íåñîîòâåòñòâóþùèõ åäèíèö â ïàðòèè. | en power curve  fr courbe de puissance | 
 
  | 2.82. îïåðàòèâíàÿ õàðàêòåðèñòèêà Ôóíêöèÿ, êîòîðàÿ îïðåäåëÿåò âåðîÿòíîñòü ïðèíÿòèÿ
  íóëåâîé ãèïîòåçû îòíîñèòåëüíî çíà÷åíèé ñêàëÿðíîãî ïàðàìåòðà, îáû÷íî
  îáîçíà÷àåìàÿ Ðà. Ïðèìå÷àíèå - Îïåðàòèâíàÿ õàðàêòåðèñòèêà âñåãäà ðàâíà
  åäèíèöå ìèíóñ çíà÷åíèå êðèòåðèÿ ìîùíîñòè. | en operating characteristic fr efflcacite | 
 
  | 2.83. êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè; êðèâàÿ
  ÎÕ Ãðàôè÷åñêîå ïðåäñòàâëåíèå îïåðàòèâíîé
  õàðàêòåðèñòèêè. Ïðèìå÷àíèÿ 1. Íà ðèñóíêå
  3 ïðåäñòàâëåíà êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè
  äëÿ ïðîâåðêè ãèïîòåçû H0 (m ³ m0) ïðîòèâ H1 (m < m0) â çàâèñèìîñòè îò ìàòåìàòè÷åñêîãî îæèäàíèÿ ãåíåðàëüíîé ñîâîêóïíîñòè m è óðîâíÿ çíà÷èìîñòè êðèòåðèÿ a. 
 Ðèñóíîê 3 - Êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè Pa - âåðîÿòíîñòü ïðèíÿòèÿ ãèïîòåçû H0; m - ìàòåìàòè÷åñêîå îæèäàíèå ñîâîêóïíîñòè 2. Íà ðèñóíêå
  4 ïðåäñòàâëåíà êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè
  äëÿ ïðîâåðêè ãèïîòåçû H0 (p < p0) ïðîòèâ H1 (p ³ p0) â çàâèñèìîñòè îò ð - äîëè íåñîîòâåòñòâóþùèõ åäèíèö â ïàðòèè,
  ïðîõîäÿùåé êîíòðîëü. 
 Ðèñóíîê 4 - Êðèâàÿ
  îïåðàòèâíîé õàðàêòåðèñòèêè Pa - âåðîÿòíîñòü ïðèíÿòèÿ ãèïîòåçû H0; p - äîëÿ íåñîîòâåòñòâóþùèõ åäèíèö â ïàðòèè. | en operating characteristic curve fr courbe d’efficacite | 
 
  | 2.84. çíà÷èìûé ðåçóëüòàò (íà âûáðàííîì óðîâíå
  çíà÷èìîñòè a) Ðåçóëüòàò ñòàòèñòè÷åñêîé ïðîâåðêè, êîòîðûé
  ïðèâîäèò ê îòáðàñûâàíèþ íóëåâîé ãèïîòåçû, â ïðîòèâíîì ñëó÷àå - ðåçóëüòàò
  íåçíà÷èì. Ïðèìå÷àíèÿ 1.
  Êîãäà ðåçóëüòàò ïðîâåðêè íàçûâàþò ñòàòèñòè÷åñêè çíà÷èìûì, ýòî ïîêàçûâàåò, ÷òî
  ðåçóëüòàò âûõîäèò çà òîò äèàïàçîí çíà÷åíèé, â êîòîðûé óêëàäûâàþòñÿ ñëó÷àéíûå
  âîçäåéñòâèÿ, êîãäà íóëåâàÿ ãèïîòåçà âåðíà. 2. Äëÿ
  ïðèìåðà, ïðèâåäåííîãî â ï. 2.71, ïðè  , ìåíüøåì À, ãäå  ñ÷èòàþò, ÷òî  çíà÷èìî ìåíüøå m0 íà óðîâíå çíà÷èìîñòè 1 - a. | en significant result (at the closen significance level a) fr resultat significatif (an niveau de signification a
  choisi) | 
 
  | 2.85. ñòåïåíü ñâîáîäû  îáùåì ñëó÷àå ÷èñëî ñëàãàåìûõ ìèíóñ ÷èñëî
  îãðàíè÷åíèé, íàëàãàåìûõ íà íèõ. | en degree of freedom fr degre de liberte | 
 
  | 2.86. c2-êðèòåðèé Êðèòåðèé, â êîòîðîì â íóëåâîé ãèïîòåçå
  èñïîëüçóåìàÿ ñòàòèñòèêà èìååò ïî ïðåäïîëîæåíèþ ðàñïðåäåëåíèå c2. Ïðèìå÷àíèå - Åãî ïðèìåíÿþò, íàïðèìåð, ïðè ðåøåíèè ñëåäóþùèõ
  çàäà÷: -
  ïðîâåðêà ðàâåíñòâà äèñïåðñèè íîðìàëüíîé ñîâîêóïíîñòè è çàäàííîãî çíà÷åíèÿ
  äèñïåðñèè, îöåíèâàåìîé íà îñíîâå ñòàòèñòèêè êðèòåðèÿ ïî âûáîðêå, âçÿòîé èç
  ýòîé ñîâîêóïíîñòè; -
  ñðàâíåíèå íàáëþäàåìûõ ÷àñòîò ñ òåîðåòè÷åñêèìè ÷àñòîòàìè. | en c2-test; chi-squared test fr test de chi carre; test c2 | 
 
  | 2.87. t-êðèòåðèé; êðèòåðèé
  Ñòüþäåíòà Ñòàòèñòè÷åñêèé êðèòåðèé, â êîòîðîì â íóëåâîé
  ãèïîòåçå èñïîëüçóåìàÿ ñòàòèñòèêà ñîîòâåòñòâóåò t-ðàñïðåäåëåíèþ. Ïðèìå÷àíèå - Ýòîò êðèòåðèé ïðèìåíÿþò, íàïðèìåð, ïðè ðåøåíèè
  ñëåäóþùèõ çàäà÷: -
  ïðîâåðêà ðàâåíñòâà ìàòåìàòè÷åñêîãî îæèäàíèÿ íîðìàëüíîé ñîâîêóïíîñòè çàäàííîìó
  çíà÷åíèþ ñ ïîìîùüþ êðèòåðèÿ, îñíîâàííîãî íà âûáîðî÷íîì ñðåäíåì è âûáîðî÷íîé
  äèñïåðñèè; -
  ïðîâåðêà ðàâåíñòâà ìàòåìàòè÷åñêèõ îæèäàíèé èç äâóõ íîðìàëüíûõ ñîâîêóïíîñòåé ñ
  îäèíàêîâîé äèñïåðñèåé íà îñíîâå äâóõ âûáîðî÷íûõ ñðåäíèõ è äâóõ âûáîðî÷íûõ
  äèñïåðñèé èç äâóõ íåçàâèñèìûõ âûáîðîê, âçÿòûõ èç ýòèõ ñîâîêóïíîñòåé; -
  êðèòåðèé, ïðèìåíÿåìûé ê çíà÷åíèþ ëèíåéíîé ðåãðåññèè èëè êîýôôèöèåíòà
  êîððåëÿöèè. | en t-test; Students test fr test t; test de Student | 
 
  | 2.88. F-êðèòåðèé, êðèòåðèé
  Ôèøåðà Ñòàòèñòè÷åñêèé êðèòåðèé, â êîòîðîì â íóëåâîé
  ãèïîòåçå èñïîëüçóåìàÿ ñòàòèñòèêà èìååò ïî ïðåäïîëîæåíèþ F-ðàñïðåäåëåíèå. Ïðèìå÷àíèå - Ýòîò êðèòåðèé ïðèìåíÿþò, íàïðèìåð, ïðè ðåøåíèè
  ñëåäóþùèõ çàäà÷: -
  ïðîâåðêà ðàâåíñòâà äèñïåðñèé äâóõ íîðìàëüíûõ ñîâîêóïíîñòåé íà îñíîâå
  âûáîðî÷íûõ äèñïåðñèé, îöåíèâàåìûõ ïî äâóì íåçàâèñèìûì âûáîðêàì; -
  ïðîâåðêà ìàòåìàòè÷åñêèõ îæèäàíèé ðàâåíñòâà íåñêîëüêèõ (íàïðèìåð, Ê)
  íîðìàëüíûõ ñîâîêóïíîñòåé ñ îäèíàêîâûìè äèñïåðñèÿìè íà îñíîâå ñðåäíèõ
  àðèôìåòè÷åñêèõ è âûáîðî÷íûõ äèñïåðñèé íåçàâèñèìûõ âûáîðîê. | en F-test fr test F | 
 
  | 2.89. ïîâòîðåíèå Òåðìèí, îáîçíà÷àþùèé âûïîëíåíèå ñòàòèñòè÷åñêîãî
  èññëåäîâàíèÿ íåñêîëüêî ðàç îäíèì è òåì æå ìåòîäîì íà îäíîé è òîé æå
  ñîâîêóïíîñòè ïðè îäèíàêîâûõ óñëîâèÿõ. | en repetition fr repetition | 
 
  | 2.90. ðåïëèêà; ïîâòîðíîå ïðîâåäåíèå
  ýêñïåðèìåíòà Îïðåäåëåíèå çíà÷åíèé áîëåå ÷åì îäèí ðàç â õîäå
  ýêñïåðèìåíòà èëè èññëåäîâàíèÿ. Ïðèìå÷àíèå -
  Ðåïëèêè îòëè÷àþòñÿ îò ïîâòîðåíèé òåì, ÷òî ïðåäïîëàãàþò ïîâòîðíûå ïðîâåðêè â
  ðàçíûõ ìåñòàõ è (èëè) â ðàçíîå âðåìÿ â ñîîòâåòñòâèè ñ ïëàíîì (ïî 1.10, ÈÑÎ
  3534.3). | en replication fr replique | 
 
  | 2.91. ðàíäîìèçàöèÿ Ïðîöåññ, ñ ïîìîùüþ êîòîðîãî ìíîæåñòâî îáúåêòîâ
  óñòàíàâëèâàþò â ñëó÷àéíîì ïîðÿäêå. Ïðèìå÷àíèå -
  Åñëè èç ñîâîêóïíîñòè, ñîñòîÿùåé èç íàòóðàëüíûõ ÷èñåë îò 1 äî n,
  èçâëåêàòü ÷èñëà ñëó÷àéíî (òî åñòü òàêèì îáðàçîì, ÷òîáû âñå ÷èñëà èìåëè
  îäèíàêîâûå øàíñû áûòü âûáðàííûìè) îäíî çà äðóãèì áåç âîçâðàùåíèÿ, ïîêà
  ñîâîêóïíîñòü íå èñ÷åðïàåòñÿ, òî ïîðÿäîê îòáîðà ÷èñåë íàçûâàþò ñëó÷àéíûì. Åñëè
  ýòè n ÷èñåë àññîöèèðîâàòü ñ n
  ðàçëè÷íûìè îáúåêòàìè èëè ñ n ðàçíûìè îáðàáîòêàìè (ïî 1.4, ÈÑÎ 3534.3),
  êîòîðûå, òàêèì îáðàçîì, ïåðåóïîðÿäî÷èâàþòñÿ â òîì ïîðÿäêå, â êîòîðîì áûëè
  âûòÿíóòû ÷èñëà, ïîðÿäîê îáúåêòîâ èëè îáðàáîòîê íàçûâàþò ñëó÷àéíûì (ïî 1.12,
  ÈÑÎ 3534.3). | en randomization fr randomisation | 
 
  | 2.92. ñëó÷àéíûå ïðè÷èíû Ôàêòîðû, êàæäûé èç êîòîðûõ èãðàåò îòíîñèòåëüíî
  ìàëóþ ðîëü, íî ñîçäàþò âàðèàöèþ, êîòîðóþ íåëüçÿ èäåíòèôèöèðîâàòü (ïî ÃÎÑÒ Ð
  50779.11). | en chance causes fr causes aleatoires | 
 
  |  | 
 
  | 3.1. (èçìåðèìàÿ) âåëè÷èíà; ôèçè÷åñêàÿ
  âåëè÷èíà Ïðèçíàê ÿâëåíèÿ, ìàòåðèàëà èëè âåùåñòâà, êîòîðûé
  ìîæíî ðàçëè÷èòü êà÷åñòâåííî è îïðåäåëèòü êîëè÷åñòâåííî [ï. 1]. Ïðèìå÷àíèÿ 1.
  Òåðìèí «âåëè÷èíà» ìîæåò îòíîñèòüñÿ ê êîëè÷åñòâó â îáùåì ñìûñëå, íàïðèìåð
  äëèíà, âðåìÿ, ìàññà, òåìïåðàòóðà, ýëåêòðè÷åñêîå ñîïðîòèâëåíèå, èëè ê
  îïðåäåëåííûì óñòàíîâëåííûì âåëè÷èíàì, íàïðèìåð äëèíà îïðåäåëåííîãî ñòåðæíÿ,
  ýëåêòðè÷åñêîå ñîïðîòèâëåíèå îïðåäåëåííîé ïðîâîëîêè. 2.
  Âåëè÷èíû, êîòîðûå âçàèìíî ñðàâíèìû, ìîæíî îáúåäèíÿòü â êîëè÷åñòâåííûå
  êàòåãîðèè, íàïðèìåð: -
  ðàáîòà, òåïëî, ýíåðãèÿ; -
  òîëùèíà, ïåðèìåòð, äëèíà âîëíû. 3.
  Ñèìâîëû äëÿ âåëè÷èí ïðèâåäåíû â ÈÑÎ 31.0 - ÈÑÎ 31.13. 4.
  Èçìåðèìûå âåëè÷èíû ìîæíî îïðåäåëèòü êîëè÷åñòâåííî. | en (measurable) quantity fr grandeur (measurable) | 
 
  | 3.2. èñòèííîå çíà÷åíèå (âåëè÷èíû) Çíà÷åíèå, êîòîðîå èäåàëüíûì îáðàçîì îïðåäåëÿåò
  âåëè÷èíó ïðè òåõ óñëîâèÿõ, ïðè êîòîðûõ ýòó âåëè÷èíó ðàññìàòðèâàþò [ï. 1]. Ïðèìå÷àíèå -
  Èñòèííîå çíà÷åíèå - òåîðåòè÷åñêîå ïîíÿòèå, êîòîðîå íåëüçÿ îïðåäåëèòü òî÷íî. | en true value (of a quantity) fr valeur vraie (d’une qrandeur) | 
 
  | 3.3. äåéñòâèòåëüíîå çíà÷åíèå (âåëè÷èíû) Çíà÷åíèå âåëè÷èíû, êîòîðîå äëÿ äàííîé öåëè ìîæíî
  ðàññìàòðèâàòü êàê èñòèííîå [ï. 1], [ï. 2]. Ïðèìå÷àíèÿ 1.
  Äåéñòâèòåëüíîå çíà÷åíèå â îáùåì ñìûñëå ðàññìàòðèâàþò êàê äîñòàòî÷íî áëèçêîå ê
  èñòèííîìó çíà÷åíèþ, ïîñêîëüêó ðàçíèöà íå èìååò áîëüøîãî çíà÷åíèÿ äëÿ äàííîé
  öåëè. 2. Çíà÷åíèå, ïðèïèñàííîå â îðãàíèçàöèè íåêîòîðîìó
  ýòàëîíó, ìîæíî ðàññìàòðèâàòü êàê äåéñòâèòåëüíîå çíà÷åíèå âåëè÷èíû,
  âîñïðîèçâîäèìîé ýòèì ýòàëîíîì. | en conventional true value (of a quantity) fr valeur conventionnellement vraie | 
 
  | 3.4. ïðèíÿòîå íîðìàëüíîå çíà÷åíèå Çíà÷åíèå âåëè÷èíû, ñëóæàùåå ñîãëàñîâàííûì
  ýòàëîíîì äëÿ ñðàâíåíèÿ è îïðåäåëÿåìîå êàê: à) òåîðåòè÷åñêîå èëè óñòàíîâëåííîå çíà÷åíèå,
  îñíîâàííîå íà íàó÷íûõ ïðèíöèïàõ; b) ïðèíÿòîå èëè ñåðòèôèöèðîâàííîå çíà÷åíèå,
  îñíîâàííîå íà ýêñïåðèìåíòàëüíûõ äàííûõ íåêîòîðûõ íàöèîíàëüíûõ èëè
  ìåæäóíàðîäíûõ îðãàíèçàöèé; ñ) ñîãëàñîâàííîå (íà îñíîâå êîíñåíñóñà) èëè
  ñåðòèôèöèðîâàííîå çíà÷åíèå, îñíîâàííîå íà ñîâìåñòíîé ýêñïåðèìåíòàëüíîé
  ðàáîòå, ïðîâîäèìîé íàó÷íûì èëè èíæåíåðíûì êîëëåêòèâîì; d) êîãäà à), b) è ñ) íå
  ïîäõîäÿò, ìàòåìàòè÷åñêîå îæèäàíèå èçìåðèìîé âåëè÷èíû, òî åñòü ñðåäíåå àðèôìåòè÷åñêîå
  èçìåðåíèé êîíêðåòíîé ñîâîêóïíîñòè. | en accepted reference value fr valeur de reference acceptee | 
 
  | 3.5. èçìåðÿåìàÿ âåëè÷èíà Âåëè÷èíà, ïîäâåðãàåìàÿ èçìåðåíèþ [1], [2]. Ïðèìå÷àíèå - Ïî îáñòîÿòåëüñòâàì ýòî ìîæåò áûòü âåëè÷èíà,
  èçìåðÿåìàÿ êîëè÷åñòâåííî èëè êà÷åñòâåííî. | en meausurand fr mesurande | 
 
  | 3.6. íàáëþäàåìîå çíà÷åíèå Çíà÷åíèå äàííîãî ïðèçíàêà, ïîëó÷åííîå â
  ðåçóëüòàòå åäèíè÷íîãî íàáëþäåíèÿ (ïî ÈÑÎ 5725.1). | en observed value fr valeur observee | 
 
  | 3.7. ðåçóëüòàò ïðîâåðêè Çíà÷åíèå íåêîòîðîãî ïðèçíàêà, ïîëó÷åííîå
  ïðèìåíåíèåì îïðåäåëåííîãî ìåòîäà ïðîâåðêè. Ïðèìå÷àíèÿ 1. Ïîä
  ïðîâåðêîé ìîæíî ïîíèìàòü òàêèå ïðîöåäóðû, êàê èçìåðåíèå, èñïûòàíèå, êîíòðîëü
  è ò.ä. 2.  ìåòîäå ïðîâåðêè äîëæíî áûòü óòî÷íåíî, ÷òî
  áóäóò âûïîëíÿòü îäíî èëè íåñêîëüêî èíäèâèäóàëüíûõ íàáëþäåíèé, ÷òî áóäóò
  ðåãèñòðèðîâàòü â êà÷åñòâå ðåçóëüòàòà ïðîâåðêè - èõ ñðåäíåå àðèôìåòè÷åñêîå èëè
  èíóþ ïîäõîäÿùóþ ôóíêöèþ, òàêóþ êàê ìåäèàíà èëè ñòàíäàðòíîå îòêëîíåíèå. Ìîæåò
  òàêæå ïîòðåáîâàòüñÿ ïðèìåíèòü ñòàíäàðòíûé ìåòîä êîððåêòèðîâêè, íàïðèìåð
  ïîïðàâêó íà îáúåì ãàçà ïðè ñòàíäàðòíûõ òåìïåðàòóðå è äàâëåíèè òàêèì îáðàçîì,
  ÷òî ðåçóëüòàò ïðîâåðêè ìîæåò áûòü ðåçóëüòàòîì, âû÷èñëåííûì ïî íåñêîëüêèì
  íàáëþäàåìûì çíà÷åíèÿì.  ïðîñòîì ñëó÷àå ðåçóëüòàò ïðîâåðêè - ýòî ñàìî
  íàáëþäàåìîå çíà÷åíèå. | en test result fr resultat d’essai | 
 
  | 3.8. îøèáêà ðåçóëüòàòà (ïðîâåðêè) Ðåçóëüòàò ïðîâåðêè ìèíóñ ïðèíÿòîå íîðìàëüíîå
  çíà÷åíèå âåëè÷èíû (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Îøèáêà - ýòî ñóììà ñëó÷àéíûõ îøèáîê è
  ñèñòåìàòè÷åñêèõ îøèáîê. | en error of result fr erreur de resultat | 
 
  | 3.9. ñëó÷àéíàÿ îøèáêà ðåçóëüòàòà (ïðîâåðêè) Êîìïîíåíò îøèáêè, êîòîðûé èçìåíÿåòñÿ
  íåïðåäâèäåííûì îáðàçîì â õîäå ïîëó÷åíèÿ ðåçóëüòàòîâ ïðîâåðêè îäíîãî ïðèçíàêà
  (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ñëó÷àéíóþ îøèáêó ðåçóëüòàòà ïðîâåðêè
  íåëüçÿ ñêîððåêòèðîâàòü. | en random error of result fr erreur aleatoire de resultat | 
 
  | 3.10. ñèñòåìàòè÷åñêàÿ îøèáêà ðåçóëüòàòà
  (ïðîâåðêè) Êîìïîíåíò îøèáêè ðåçóëüòàòà, êîòîðûé îñòàåòñÿ
  ïîñòîÿííûì èëè çàêîíîìåðíî èçìåíÿåòñÿ â õîäå ïîëó÷åíèÿ ðåçóëüòàòîâ ïðîâåðêè
  äëÿ îäíîãî ïðèçíàêà. Ïðèìå÷àíèå - Ñèñòåìàòè÷åñêèå îøèáêè è èõ ïðè÷èíû ìîãóò áûòü
  èçâåñòíû èëè íåèçâåñòíû. | en systematic error of result fr erreur systematique de resultat | 
 
  | 3.11. òî÷íîñòü (ðåçóëüòàòà ïðîâåðêè) Áëèçîñòü ðåçóëüòàòà ïðîâåðêè ê ïðèíÿòîìó
  íîðìàëüíîìó çíà÷åíèþ âåëè÷èíû (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ïîíÿòèå òî÷íîñòè, êîãäà åãî îòíîñÿò ê
  ðåçóëüòàòàì ïðîâåðêè, âêëþ÷àåò â ñåáÿ êîìáèíàöèþ ñëó÷àéíûõ êîìïîíåíòîâ è
  îáùåãî êîìïîíåíòà ñèñòåìàòè÷åñêîé îøèáêè èëè ñìåùåíèÿ. | en accuracy fr exactitude | 
 
  | 3.12. ïðàâèëüíîñòü (ðåçóëüòàòà ïðîâåðêè) Áëèçîñòü ñðåäíåãî çíà÷åíèÿ, ïîëó÷åííîãî â
  äëèííîì ðÿäó ðåçóëüòàòîâ ïðîâåðîê, ê ïðèíÿòîìó íîðìàëüíîìó çíà÷åíèþ âåëè÷èíû
  (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ìåðó ïðàâèëüíîñòè îáû÷íî âûðàæàþò â òåðìèíàõ
  ñìåùåíèÿ. | en trueness fr justesse | 
 
  | 3.13. ñìåùåíèå (ðåçóëüòàòà ïðîâåðêè) Ðàçíîñòü ìåæäó ìàòåìàòè÷åñêèì îæèäàíèåì
  ðåçóëüòàòîâ ïðîâåðêè è ïðèíÿòûì íîðìàëüíûì çíà÷åíèåì (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ñìåùåíèå - ýòî îáùàÿ ñèñòåìàòè÷åñêàÿ îøèáêà â
  ïðîòèâîïîëîæíîñòü ñëó÷àéíîé îøèáêå. Ìîæåò áûòü îäèí èëè íåñêîëüêî
  êîìïîíåíòîâ, îáðàçóþùèõ ñèñòåìàòè÷åñêóþ îøèáêó. Áîëüøåå ñèñòåìàòè÷åñêîå
  ñìåùåíèå îò ïðèíÿòîãî çíà÷åíèÿ ñîîòâåòñòâóåò áîëüøîìó çíà÷åíèþ ñìåùåíèÿ. | en bias fr biais | 
 
  | 3.14. ïðåöèçèîííîñòü (ðåçóëüòàòà ïðîâåðêè) Áëèçîñòü ìåæäó íåçàâèñèìûìè ðåçóëüòàòàìè
  ïðîâåðêè, ïîëó÷åííûìè ïðè îïðåäåëåííûõ ïðèíÿòûõ óñëîâèÿõ (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1.
  Ïðåöèçèîííîñòü çàâèñèò îò ðàñïðåäåëåíèÿ ñëó÷àéíûõ îøèáîê è íå ñâÿçàíà íè ñ
  èñòèííûì çíà÷åíèåì, íè ñ çàäàííûì çíà÷åíèåì. 2.
  Ìåðó ïðåöèçèîííîñòè îáû÷íî âûðàæàþò â òåðìèíàõ ðàññåÿíèÿ è âû÷èñëÿþò êàê
  ñòàíäàðòíîå îòêëîíåíèå ðåçóëüòàòîâ ïðîâåðêè. Ìàëîé ïðåöèçèîííîñòè
  ñîîòâåòñòâóåò áîëüøîå ñòàíäàðòíîå îòêëîíåíèå. 3. Íåçàâèñèìûå ðåçóëüòàòû ïðîâåðêè îçíà÷àþò
  ðåçóëüòàòû, ïîëó÷åííûå òàêèì îáðàçîì, ÷òî îòñóòñòâóåò âëèÿíèå ïðåäûäóùèõ
  ðåçóëüòàòîâ íà òîì æå ñàìîì èëè àíàëîãè÷íîì îáúåêòå ïðîâåðêè. Êîëè÷åñòâåííûå
  ìåðû ïðåöèçèîííîñòè ðåøàþùèì îáðàçîì çàâèñÿò îò ïðèíÿòûõ óñëîâèé. Óñëîâèÿ
  ïîâòîðÿåìîñòè è âîñïðîèçâîäèìîñòè ÿâëÿþòñÿ ðàçíûìè ñòåïåíÿìè ïðèíÿòûõ
  óñëîâèé. | en precision fr fidelite | 
 
  | 3.15. ïîâòîðÿåìîñòü (ðåçóëüòàòà ïðîâåðêè);
  ñõîäèìîñòü Ïðåöèçèîííîñòü â óñëîâèÿõ ïîâòîðÿåìîñòè (ïî ÈÑÎ
  5725.1)  | en repeatability fr repetabilite | 
 
  | 3.16. óñëîâèÿ ïîâòîðÿåìîñòè Óñëîâèÿ, ïðè êîòîðûõ íåçàâèñèìûå ðåçóëüòàòû
  ïðîâåðêè ïîëó÷åíû îäíèì ìåòîäîì, íà èäåíòè÷íûõ èñïûòàòåëüíûõ îáðàçöàõ, â
  îäíîé ëàáîðàòîðèè, îäíèì îïåðàòîðîì, ñ èñïîëüçîâàíèåì îäíîãî îáîðóäîâàíèÿ è
  çà êîðîòêèé èíòåðâàë âðåìåíè (ïî ÈÑÎ 5725.1). | en repeatability conditions fr conditions de repetabilite | 
 
  | 3.17. ñòàíäàðòíîå îòêëîíåíèå ïîâòîðÿåìîñòè Ñòàíäàðòíîå îòêëîíåíèå ðåçóëüòàòîâ ïðîâåðêè,
  ïîëó÷åííûõ â óñëîâèÿõ ïîâòîðÿåìîñòè (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1. Ýòî
  ìåðà ðàññåÿíèÿ ðåçóëüòàòîâ ïðîâåðêè â óñëîâèÿõ ïîâòîðÿåìîñòè. 2. Àíàëîãè÷íî «äèñïåðñèþ ïîâòîðÿåìîñòè» è
  «êîýôôèöèåíò âàðèàöèè ïîâòîðÿåìîñòè» íàäî îïðåäåëÿòü êàê ìåðû ðàññåÿíèÿ
  ðåçóëüòàòîâ ïðîâåðêè â óñëîâèÿõ ïîâòîðÿåìîñòè. | en repeatability standard deviation fr ecart-type de repetabilite | 
 
  | 3.18. ïðåäåë ïîâòîðÿåìîñòè Çíà÷åíèå, êîòîðîå ìåíüøå èëè ðàâíî àáñîëþòíîé
  ðàçíîñòè ìåæäó äâóìÿ ðåçóëüòàòàìè ïðîâåðîê, ïîëó÷àåìûìè â óñëîâèÿõ
  ïîâòîðÿåìîñòè, îæèäàåìîå ñ âåðîÿòíîñòüþ 95 % (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1.
  Èñïîëüçóþò îáîçíà÷åíèå r. 2.  íàñòîÿùåå âðåìÿ â íîðìàòèâíûõ äîêóìåíòàõ
  ïðèíÿòî îáîçíà÷åíèå d. | en repeatability limit fr limite de repetabilite | 
 
  | 3.19. êðèòè÷åñêàÿ ðàçíîñòü ïîâòîðÿåìîñòè Çíà÷åíèå, ìåíüøåå èëè ðàâíîå àáñîëþòíîé ðàçíîñòè
  ìåæäó äâóìÿ êîíå÷íûìè çíà÷åíèÿìè, êàæäîå èç êîòîðûõ ïðåäñòàâëÿåò ñîáîé ðÿäû
  ðåçóëüòàòîâ ïðîâåðîê, ïîëó÷åííûõ â óñëîâèÿõ ïîâòîðÿåìîñòè, îæèäàåìîå ñ
  çàäàííîé âåðîÿòíîñòüþ (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1.
  Ïðèìåðàìè êîíå÷íûõ ðåçóëüòàòîâ ñëóæàò ñðåäíåå àðèôìåòè÷åñêîå è âûáîðî÷íàÿ
  ìåäèàíà ðÿäîâ ðåçóëüòàòîâ ïðîâåðîê; ñàìè ðÿäû ìîãóò ñîäåðæàòü òîëüêî ïî
  îäíîìó ðåçóëüòàòó ïðîâåðêè. 2. Ïðåäåë ïîâòîðÿåìîñòè r - ýòî
  êðèòè÷åñêàÿ ðàçíîñòü ïîâòîðÿåìîñòè äëÿ äâóõ åäèíè÷íûõ ðåçóëüòàòîâ ïðîâåðêè
  ïðè âåðîÿòíîñòè 95 %. | en repeatability critical difference fr difference critique de repetabilite | 
 
  | 3.20. âîñïðîèçâîäèìîñòü (ðåçóëüòàòîâ
  ïðîâåðêè) Ïðåöèçèîííîñòü â óñëîâèÿõ âîñïðîèçâîäèìîñòè (ïî
  ÈÑÎ 5725.1). | en reproducibility fr reproductibilite | 
 
  | 3.21. óñëîâèÿ âîñïðîèçâîäèìîñòè Óñëîâèÿ, ïðè êîòîðûõ ðåçóëüòàòû ïðîâåðêè ïîëó÷åíû
  îäíèì ìåòîäîì, íà èäåíòè÷íûõ èñïûòàòåëüíûõ îáðàçöàõ, â ðàçëè÷íûõ
  ëàáîðàòîðèÿõ, ðàçíûìè îïåðàòîðàìè, ñ èñïîëüçîâàíèåì ðàçëè÷íîãî îáîðóäîâàíèÿ
  (ïî ÈÑÎ 5725.1). | en reproducibility conditions fr conditions de reproductibilite | 
 
  | 3.22. ñòàíäàðòíîå îòêëîíåíèå
  âîñïðîèçâîäèìîñòè Ñòàíäàðòíîå îòêëîíåíèå ðåçóëüòàòîâ ïðîâåðêè,
  ïîëó÷åííûõ â óñëîâèÿõ âîñïðîèçâîäèìîñòè. Ïðèìå÷àíèÿ 1. Ýòî
  ìåðà ðàññåÿíèÿ ðàñïðåäåëåíèÿ ðåçóëüòàòîâ ïðîâåðêè â óñëîâèÿõ
  âîñïðîèçâîäèìîñòè. 2. Àíàëîãè÷íî «äèñïåðñèþ âîñïðîèçâîäèìîñòè» è
  «êîýôôèöèåíò âàðèàöèè âîñïðîèçâîäèìîñòè» íàäî îïðåäåëÿòü êàê ìåðû ðàññåÿíèÿ
  ðåçóëüòàòîâ ïðîâåðêè â óñëîâèÿõ âîñïðîèçâîäèìîñòè. | en reproducibility standard deviation fr ecart-type de reproductibilite | 
 
  | 3.23. ïðåäåë âîñïðîèçâîäèìîñòè Çíà÷åíèå, ìåíüøåå èëè ðàâíîå àáñîëþòíîé ðàçíîñòè
  ìåæäó äâóìÿ ðåçóëüòàòàìè ïðîâåðêè, ïîëó÷åííûìè â óñëîâèÿõ âîñïðîèçâîäèìîñòè,
  îæèäàåìîå ñ âåðîÿòíîñòüþ 95 % (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1.
  Èñïîëüçóþò îáîçíà÷åíèå R. 2.  íàñòîÿùåå âðåìÿ â íîðìàòèâíûõ äîêóìåíòàõ
  ïðèíÿòî îáîçíà÷åíèå D. | en reproducibility limit fr limite de reproductibilite | 
 
  | 3.24. êðèòè÷åñêàÿ ðàçíîñòü âîñïðîèçâîäèìîñòè Çíà÷åíèå, ìåíüøåå èëè ðàâíîå àáñîëþòíîé ðàçíîñòè
  ìåæäó äâóìÿ êîíå÷íûìè çíà÷åíèÿìè, êàæäîå èç êîòîðûõ ïðåäñòàâëÿåò ñîáîé ðÿäû
  ðåçóëüòàòîâ ïðîâåðîê, ïîëó÷åííûõ â óñëîâèÿõ âîñïðîèçâîäèìîñòè, îæèäàåìîå ñ
  çàäàííîé âåðîÿòíîñòüþ (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ïðèìåðàìè êîíå÷íûõ ðåçóëüòàòîâ ñëóæàò ñðåäíåå
  àðèôìåòè÷åñêîå è âûáîðî÷íàÿ ìåäèàíà ðÿäîâ ðåçóëüòàòîâ ïðîâåðîê; ðÿäû ìîãóò
  ñîäåðæàòü òîëüêî ïî îäíîìó ðåçóëüòàòó ïðîâåðêè. | en reproducibility critical difference fr difference critique de reproductibilite | 
 
  | 3.25. íåîïðåäåëåííîñòü (ðåçóëüòàòà ïðîâåðêè) Îöåíêà, îòíîñÿùàÿñÿ ê ðåçóëüòàòó ïðîâåðêè,
  êîòîðàÿ õàðàêòåðèçóåò îáëàñòü çíà÷åíèé, âíóòðè êîòîðîé ëåæèò èñòèííîå
  çíà÷åíèå. Ïðèìå÷àíèÿ 1.
  Íåîïðåäåëåííîñòü èçìåðÿåò ñîâîêóïíîñòü ìíîãèõ êîìïîíåíòîâ. Íåêîòîðûå èç íèõ
  ìîæíî îöåíèòü íà îñíîâå ñòàòèñòè÷åñêîãî ðàñïðåäåëåíèÿ ðåçóëüòàòîâ â ðÿäàõ èçìåðåíèé
  è îõàðàêòåðèçîâàòü ñòàíäàðòíûìè îòêëîíåíèÿìè. Îöåíêè äðóãèõ êîìïîíåíòîâ
  âîçìîæíû òîëüêî íà îñíîâå îïûòà èëè èç äðóãèõ èñòî÷íèêîâ èíôîðìàöèè. 2.
  Íåîïðåäåëåííîñòü ñëåäóåò îòëè÷àòü îò îöåíêè, ñâÿçàííîé ñ ðåçóëüòàòîì
  ïðîâåðêè, êîòîðàÿ õàðàêòåðèçóåòñÿ çíà÷åíèÿìè èíòåðâàëîâ, âíóòðè êîòîðûõ ëåæèò
  ìàòåìàòè÷åñêîå îæèäàíèå. Ýòà ïîñëåäíÿÿ îöåíêà - ìåðà ïðåöèçèîííîñòè, à íå
  ïðàâèëüíîñòè, è åå íàäî èñïîëüçîâàòü, òîëüêî åñëè èñòèííîå çíà÷åíèå íå
  îïðåäåëåíî. Êîãäà ìàòåìàòè÷åñêîå îæèäàíèå èñïîëüçóþò âìåñòî èñòèííîãî
  çíà÷åíèÿ, íàäî óïîòðåáëÿòü âûðàæåíèå «ñëó÷àéíûé êîìïîíåíò íåîïðåäåëåííîñòè». | en uncertainty fr incertitude | 
 
  |  | 
 
  | 4.1. âûáîðî÷íàÿ åäèíèöà à) Îäíà èç êîíêðåòíûõ åäèíèö, èç êîòîðûõ ñîñòîèò
  ãåíåðàëüíàÿ ñîâîêóïíîñòü. b) Îïðåäåëåííîå êîëè÷åñòâî ïðîäóêöèè, ìàòåðèàëà
  èëè óñëóã, îáðàçóþùåå åäèíñòâî è âçÿòîå èç îäíîãî ìåñòà, â îäíî âðåìÿ äëÿ
  ôîðìèðîâàíèÿ ÷àñòè âûáîðêè. Ïðèìå÷àíèÿ 1.
  Âûáîðî÷íàÿ åäèíèöà ìîæåò ñîäåðæàòü áîëåå îäíîãî èçäåëèÿ, äîïóñêàþùåãî
  èñïûòàíèå, íàïðèìåð ïà÷êà ñèãàðåò, íî ïðè ýòîì ïîëó÷àþò îäèí ðåçóëüòàò
  èñïûòàíèÿ èëè íàáëþäåíèÿ. 2. Åäèíèöåé ïðîäóêöèè ìîæåò áûòü îäíî èçäåëèå,
  ïàðà èëè íàáîð èçäåëèé, èëè åþ ìîæåò áûòü îïðåäåëåííîå êîëè÷åñòâî ìàòåðèàëà,
  òàêîå êàê îòðåçîê ëàòóííîãî ïðóòêà îïðåäåëåííîé äëèíû, îïðåäåëåííûé îáúåì
  æèäêîé êðàñêè èëè çàäàííàÿ ìàññà óãëÿ. Îíà íåîáÿçàòåëüíî äîëæíà áûòü òàêîé
  æå, êàê åäèíèöà çàêóïêè, ïîñòàâêè, ïðîèçâîäñòâà èëè îòãðóçêè. | en sampling unit fr unite d’echantillonnage | 
 
  | 4.2. âûáîðêà [ïðîáà] Îäíà èëè íåñêîëüêî âûáîðî÷íûõ åäèíèö, âçÿòûõ èç
  ãåíåðàëüíîé ñîâîêóïíîñòè è ïðåäíàçíà÷åííûõ äëÿ ïîëó÷åíèÿ èíôîðìàöèè î íåé. Ïðèìå÷àíèå - Âûáîðêà [ïðîáà] ìîæåò ñëóæèòü îñíîâîé äëÿ
  ïðèíÿòèÿ ðåøåíèÿ î ãåíåðàëüíîé ñîâîêóïíîñòè èëè î ïðîöåññå, êîòîðûé åå
  ôîðìèðóåò. | en sample fr echantillon | 
 
  | 4.3. îáúåì âûáîðêè ×èñëî âûáîðî÷íûõ åäèíèö â âûáîðêå. | en sample size fr effectif d’echantillon | 
 
  | 4.4. îòáîð âûáîðêè Ïðîöåññ èçâëå÷åíèÿ èëè ñîñòàâëåíèÿ âûáîðêè. | en sampling fr echantillonnage | 
 
  | 4.5. ïðîöåäóðà âûáîðî÷íîãî êîíòðîëÿ Ïîîïåðàöèîííûå òðåáîâàíèÿ è (èëè) èíñòðóêöèè,
  ñâÿçàííûå ñ ðåàëèçàöèåé êîíêðåòíîãî ïëàíà âûáîðî÷íîãî êîíòðîëÿ, òî åñòü
  çàïëàíèðîâàííûé ìåòîä îòáîðà, èçâëå÷åíèÿ è ïîäãîòîâêè âûáîðêè (âûáîðîê) èç
  ïàðòèé äëÿ ïîëó÷åíèÿ èíôîðìàöèè î ïðèçíàêå (ïðèçíàêàõ) â ïàðòèè. | en sampling procedure fr procedure d’echantillonnage | 
 
  | 4.6. âûáîðêà ñ âîçâðàùåíèåì Âûáîðêà, èç êîòîðîé êàæäóþ îòîáðàííóþ è
  íàáëþäàåìóþ åäèíèöó âîçâðàùàþò â ñîâîêóïíîñòü ïåðåä îòáîðîì ñëåäóþùåé
  åäèíèöû. Ïðèìå÷àíèå - Îäíà è òà æå åäèíèöà ìîæåò ìíîãîêðàòíî
  ïîÿâëÿòüñÿ â âûáîðêå. | en sampling with replacement fr echantillonnage avec remise; echantillonnage non exhaustif | 
 
  | 4.7. âûáîðêà áåç âîçâðàùåíèÿ Âûáîðêà, â êîòîðóþ åäèíèöû îòáèðàþò èç
  ñîâîêóïíîñòè òîëüêî îäèí ðàç èëè ïîñëåäîâàòåëüíî è íå âîçâðàùàþò â íåå. | en sampling without replacement fr echantillonnage sans remise; echantillonnage exhaustif | 
 
  | 4.8. ñëó÷àéíàÿ âûáîðêà Âûáîðêà n âûáîðî÷íûõ
  åäèíèö, âçÿòûõ èç ñîâîêóïíîñòè òàêèì îáðàçîì, ÷òî êàæäàÿ âîçìîæíàÿ êîìáèíàöèÿ
  èç n åäèíèö èìååò îïðåäåëåííóþ
  âåðîÿòíîñòü áûòü îòîáðàííîé. | en random sample fr echantillon au hasard | 
 
  | 4.9. ïðîñòàÿ ñëó÷àéíàÿ âûáîðêà Âûáîðêà n âûáîðî÷íûõ
  åäèíèö, âçÿòûõ èç ñîâîêóïíîñòè òàêèì îáðàçîì, ÷òî âñå âîçìîæíûå êîìáèíàöèè èç
  n åäèíèö èìåþò îäèíàêîâóþ âåðîÿòíîñòü áûòü
  îòîáðàííûìè. | en simple random sample fr echantillon simple au hasard | 
 
  | 4.10. ïîäâûáîðêà Âûáîðêà [ïðîáà], âçÿòàÿ èç âûáîðêè [ïðîáû] ãåíåðàëüíîé
  ñîâîêóïíîñòè. Ïðèìå÷àíèÿ 1. Åå
  ìîæíî îòáèðàòü òåì æå ìåòîäîì, ÷òî è ïðè îòáîðå èñõîäíîé âûáîðêè [ïðîáû], íî
  ýòî íåîáÿçàòåëüíî. 2. Ïðè îòáîðå ïðîáû èç íåøòó÷íîé ïðîäóêöèè
  ïîäâûáîðêè ÷àñòî ïîëó÷àþò äåëåíèåì ïðîáû. | en subsample fr sous-echantillon | 
 
  | 4.11. äåëåíèå ïðîáû Ïðîöåññ îòáîðà îäíîé èëè íåñêîëüêèõ ïðîá èç
  ïðîáû íåøòó÷íîé ïðîäóêöèè òàêèì ñïîñîáîì, êàê íàðåçàíèå, ìåõàíè÷åñêîå äåëåíèå
  èëè êâàðòîâàíèå. | en sample division fr division d’un echantillon | 
 
  | 4.12. äóáëèðóþùàÿ âûáîðêà [ïðîáà] Îäíà èç äâóõ èëè áîëåå âûáîðîê [ïðîá] èëè
  ïîäâûáîðîê [ïðîá], ïîëó÷åííûõ îäíîâðåìåííî, îäíèì ìåòîäîì åå îòáîðà èëè
  äåëåíèåì âûáîðêè [ïðîáû]. | en duplicate sample fr echantillon dedouble | 
 
  | 4.13. ðàññëîåíèå Ðàçäåëåíèå ñîâîêóïíîñòè íà âçàèìîèñêëþ÷àþùèå è èñ÷åðïûâàþùèå
  ïîäñîâîêóïíîñòè, íàçûâàåìûå ñëîÿìè, êîòîðûå äîëæíû áûòü áîëåå îäíîðîäíûìè
  îòíîñèòåëüíî èññëåäóåìûõ ïîêàçàòåëåé, ÷åì âñÿ ñîâîêóïíîñòü. | en stratification fr stratification | 
 
  | 4.14. ðàññëîåííàÿ âûáîðêà [ïðîáà] Â ñîâîêóïíîñòè, êîòîðóþ ìîæíî ðàçäåëèòü íà
  ðàçëè÷íûå âçàèìíî èñêëþ÷àþùèå è èñ÷åðïûâàþùèå ïîäñîâîêóïíîñòè, íàçûâàåìûå
  ñëîÿìè, îòáîð, ïðîâîäèìûé òàêèì îáðàçîì, ÷òî â âûáîðêó [ïðîáó] îòáèðàþò
  îïðåäåëåííûå äîëè îò ðàçíûõ ñëîåâ è êàæäûé ñëîé ïðåäñòàâëÿþò õîòÿ áû îäíîé
  âûáîðî÷íîé åäèíèöåé. | en stratified sampling fr echantillonnage stratifie | 
 
  | 4.15. ñèñòåìàòè÷åñêèé îòáîð Îòáîð âûáîðêè êàêèì-ëèáî ñèñòåìàòè÷åñêèì
  ìåòîäîì. | en systematic sampling fr echantillonnage systematique | 
 
  | 4.16. ïåðèîäè÷åñêèé ñèñòåìàòè÷åñêèé îòáîð Îòáîð n âûáîðî÷íûõ
  åäèíèö ñ ïîðÿäêîâûìè íîìåðàìè: h, h + k,
  h + 2k, ..., h + (n - 1) k, ãäå h è k - öåëûå ÷èñëà,
  óäîâëåòâîðÿþùèå ñîîòíîøåíèÿì 
 è h îáû÷íî âûáèðàþò ñëó÷àéíî èç k
  ïåðâûõ öåëûõ ÷èñåë, åñëè N îáúåêòîâ ñîâîêóïíîñòè
  ðàñïîëîæåíû ïî îïðåäåëåííîé ñèñòåìå è åñëè îíè ïðîíóìåðîâàíû îò 1 äî N. Ïðèìå÷àíèå - Ïåðèîäè÷åñêèé ñèñòåìàòè÷åñêèé îòáîð îáû÷íî
  ïðèìåíÿþò äëÿ ïîëó÷åíèÿ âûáîðêè, êîòîðàÿ ñëó÷àéíà ïî îòíîøåíèþ ê íåêîòîðûì
  ïðèçíàêàì, î êîòîðûõ èçâåñòíî, ÷òî îíè íå çàâèñÿò îò ñèñòåìàòè÷åñêîãî
  ñìåùåíèÿ. | en periodic systematic sampling fr echantillonnage systematique periodique | 
 
  | 4.17. ïåðèîä îòáîðà (âûáîðêè) Èíòåðâàë âðåìåíè, â òå÷åíèå êîòîðîãî áåðóò
  î÷åðåäíóþ âûáîðî÷íóþ åäèíèöó ïðè ïåðèîäè÷åñêîì ñèñòåìàòè÷åñêîì îòáîðå. Ïðèìå÷àíèå - Ïåðèîä îòáîðà ìîæåò áûòü ïîñòîÿííûì èëè
  çàâèñåòü îò âûõîäà èëè îò ñêîðîñòè ïðîöåññà, òî åñòü çàâèñåòü îò êîëè÷åñòâà
  ìàòåðèàëà, èçãîòîâëåííîãî â ïðîèçâîäñòâåííîì ïðîöåññå èëè çàãðóæåííîãî â
  ïðîöåññå ïîãðóçêè. | en sampling interval fr intervalle d’echantillonnage | 
 
  | 4.18. êëàñòåðíûé îòáîð; îòáîð ìåòîäîì
  ãðóïïèðîâêè Ñïîñîá îòáîðà, ïðè êîòîðîì ñîâîêóïíîñòü
  ðàçäåëÿþò íà âçàèìîèñêëþ÷àþùèå è èñ÷åðïûâàþùèå ãðóïïû èëè êëàñòåðû, â êîòîðûõ
  âûáîðî÷íûå åäèíèöû îáúåäèíåíû îïðåäåëåííûì îáðàçîì, è âûáîðêó èç ýòèõ
  êëàñòåðîâ áåðóò ñëó÷àéíî, ïðè÷åì âñå âûáîðî÷íûå åäèíèöû âêëþ÷àþò â îáùóþ
  âûáîðêó. | en cluster sampling fr ehantillonnage en grappe | 
 
  | 4.19. ìíîãîñòàäèéíûé îòáîð Îòáîð, ïðè êîòîðîì âûáîðêó áåðóò â íåñêîëüêî
  ñòàäèé, âûáîðî÷íûå åäèíèöû íà êàæäîé ñòàäèè îòáèðàþò èç áîëüøèõ âûáîðî÷íûõ
  åäèíèö, îòîáðàííûõ íà ïðåäûäóùåé ñòàäèè. | en multi-stage sampling; nested sampling fr echantillonnage a plusieurs degres; echantillonnage en serie | 
 
  | 4.20. ìíîãîñòàäèéíûé êëàñòåðíûé îòáîð Êëàñòåðíûé îòáîð, ïðîâåäåííûé â äâå èëè áîëåå
  ñòàäèè, ïðè êîòîðîì êàæäûé îòáîð äåëàþò èç êëàñòåðîâ, êîòîðûå óæå ïîëó÷åíû èç
  ðàçäåëåíèÿ ïðåäøåñòâóþùåé âûáîðêè. | en multi-stage cluster sampling fr echantillonnage en grappe a plusieurs degres | 
 
  | 4.21. ïåðâè÷íàÿ âûáîðêà [ïðîáà] Âûáîðêà [ïðîáà], ïîëó÷àåìàÿ èç ñîâîêóïíîñòè íà
  ïåðâîé ñòàäèè ìíîãîñòàäèéíîãî îòáîðà | en primary sample fr echantillonnage primaire | 
 
  | 4.22. âòîðè÷íàÿ âûáîðêà [ïðîáà] Âûáîðêà [ïðîáà], ïîëó÷àåìàÿ èç ïåðâè÷íîé âûáîðêè
  [ïðîáû] íà âòîðîé ñòàäèè ìíîãîñòàäèéíîãî îòáîðà. Ïðèìå÷àíèå - Ýòî ìîæíî ðàñïðîñòðàíèòü íà k-þ
  ñòàäèþ ïðè k > 2. | en secondary sample fr echantillon secondaire | 
 
  | 4.23. êîíå÷íàÿ âûáîðêà Âûáîðêà, ïîëó÷àåìàÿ íà ïîñëåäíåé ñòàäèè
  ìíîãîñòàäèéíîãî îòáîðà. | en final sample fr echantillon final | 
 
  | 4.24. âûáîðî÷íàÿ äîëÿ à) Îòíîøåíèå îáúåìà âûáîðêè ê îáùåìó ÷èñëó
  âûáîðî÷íûõ åäèíèö. b) Êîãäà îòáèðàþò íåøòó÷íóþ èëè íåïðåðûâíî
  ïðîèçâîäèìóþ ïðîäóêöèþ, âûáîðî÷íóþ äîëþ îïðåäåëÿþò îòíîøåíèåì êîëè÷åñòâà
  ïðîáû ê êîëè÷åñòâó ñîâîêóïíîñòè èëè ïîäñîâîêóïíîñòè. Ïðèìå÷àíèå - Ïîä êîëè÷åñòâîì ïðîáû èëè ñîâîêóïíîñòè
  ïîíèìàþò ìàññó, îáúåì, ïëîùàäü è ò.ä. | en sampling fraction fr taux d’echantillonnage; fraction de sondage | 
 
  | 4.25. ìãíîâåííàÿ ïðîáà Êîëè÷åñòâî íåøòó÷íîé ïðîäóêöèè, âçÿòîå
  åäèíîâðåìåííî çà îäèí ïðèåì èç áîëüøåãî îáúåìà ýòîé æå ïðîäóêöèè. | en increment fr prelevement elementaire | 
 
  | 4.26. îáðàçåö (äëÿ èñïûòàíèé) ×àñòü âûáîðî÷íîé åäèíèöû, òðåáóåìàÿ äëÿ öåëåé
  èñïûòàíèÿ. | en test piece fr eprouvette | 
 
  | 4.27. îòáîð ïðîá Îòáîð èç ïàðòèé íåøòó÷íîé ïðîäóêöèè, ãäå
  âûáîðî÷íûå åäèíèöû èçíà÷àëüíî òðóäíîðàçëè÷èìû. Ïðèìå÷àíèå - Ïðèìåðàìè ìîãóò ñëóæèòü îòáîð ïðîá èç áîëüøèõ
  êó÷ óãëÿ äëÿ àíàëèçà íà ñîäåðæàíèå çîëû èëè òåïëîòû ñãîðàíèÿ, èëè òàáàêà íà
  ñîäåðæàíèå âëàãè. | en bulk sampling fr echantillonnage en vrac | 
 
  | 4.28. ñóììàðíàÿ ïðîáà Îáúåäèíåíèå ìãíîâåííûõ ïðîá ìàòåðèàëà, êîãäà
  îòáèðàþò íåøòó÷íóþ ïðîäóêöèþ. | en aggregated sample fr echantillon d’ensemble | 
 
  | 4.29. îáúåäèíåííàÿ âûáîðêà [ïðîáà] Âûáîðêà [ïðîáà] èç ñîâîêóïíîñòè, ïîëó÷àåìàÿ
  îáúåäèíåíèåì âñåõ âûáîðî÷íûõ åäèíèö, âçÿòûõ èç ýòîé ñîâîêóïíîñòè. | en gross sample fr echantillon global | 
 
  | 4.30. ïîäãîòîâêà ïðîáû Äëÿ íåøòó÷íîé ïðîäóêöèè - ñèñòåìà îïåðàöèé,
  òàêèõ êàê èçìåëü÷åíèå, ñìåøèâàíèå, äåëåíèå è ò.ä., íåîáõîäèìûõ äëÿ
  ïðåâðàùåíèÿ îòîáðàííîé ïðîáû ìàòåðèàëà â ëàáîðàòîðíóþ ïðîáó èëè ïðîáó äëÿ
  èñïûòàíèé. Ïðèìå÷àíèå - Ïîäãîòîâêà ïðîáû íå äîëæíà, íàñêîëüêî ýòî
  âîçìîæíî, èçìåíÿòü ðåïðåçåíòàòèâíîñòü ñîâîêóïíîñòè, èç êîòîðîé îíà
  èçãîòîâëåíà. | en sample preparation fr preparation d’un echantillon | 
 
  | 4.31. ëàáîðàòîðíàÿ ïðîáà Ïðîáà, ïðåäíàçíà÷åííàÿ äëÿ ëàáîðàòîðíûõ
  èññëåäîâàíèé èëè èñïûòàíèé. | en laboratory sample fr echantillon pour laboratoire | 
 
  | 4.32. ïðîáà äëÿ àíàëèçà Ïðîáà, ïîäãîòîâëåííàÿ äëÿ ïðîâåäåíèÿ èñïûòàíèé
  èëè àíàëèçà, êîòîðóþ ïîëíîñòüþ è åäèíîâðåìåííî èñïîëüçóþò äëÿ ïðîâåäåíèÿ
  èñïûòàíèÿ èëè àíàëèçà. | en test sample; analysis sample fr echantillon pour essai; echantillon pour analyse | 
 
 
  |  |  |  | 
 
c2-êðèòåðèé                                                                                                                           2.86
F-êðèòåðèé                                                                                                                           2.88
F-ðàñïðåäåëåíèå                                                                                                                           1.41
t-êðèòåðèé                                                                                                                           2.87
t-ðàñïðåäåëåíèå                                                                                                                           1.40
áåòà-ðàñïðåäåëåíèå                                                                                                                           1.45
âåëè÷èíà (èçìåðèìàÿ)                                                                                                                           3.1
âåëè÷èíà èçìåðÿåìàÿ                                                                                                                           3.5
âåëè÷èíà ñòàíäàðòèçîâàííàÿ ñëó÷àéíàÿ                                                                                                                           1.25
âåëè÷èíà ñëó÷àéíàÿ                                                                                                                           1.2
âåëè÷èíà öåíòðèðîâàííàÿ ñëó÷àéíàÿ                                                                                                                           1.21
âåëè÷èíà ôèçè÷åñêàÿ                                                                                                                           3.1
âåðîÿòíîñòü                                                                                                                           1.1
âåðîÿòíîñòü äîâåðèòåëüíàÿ                                                                                                                           2.59
âåðîÿòíîñòü îøèáêè âòîðîãî ðîäà                                                                                                                           2.78
âåðîÿòíîñòü îøèáêè ïåðâîãî ðîäà                                                                                                                           2.76
âîñïðîèçâîäèìîñòü (ðåçóëüòàòîâ ïðîâåðêè)                                                                                                                           3.20
âûáîðêà                                                                                                                           4.2
âûáîðêà áåç âîçâðàùåíèÿ                                                                                                                           4.7
âûáîðêà (ïðîáà) âòîðè÷íàÿ                                                                                                                           4.22
âûáîðêà äóáëèðóþùàÿ                                                                                                                           4.12
âûáîðêà êîíå÷íàÿ                                                                                                                           4.23
âûáîðêà îáúåäèíåííàÿ                                                                                                                           4.28
âûáîðêà ïåðâè÷íàÿ                                                                                                                           4.21
âûáîðêà ðàññëîåííàÿ                                                                                                                           4.14
âûáîðêà ïðîñòàÿ ñëó÷àéíàÿ                                                                                                                           4.9
âûáîðêà ñ âîçâðàùåíèåì                                                                                                                           4.6
âûáîðêà ñëó÷àéíàÿ                                                                                                                           4.8
âûáðîñû                                                                                                                           2.64
ãàììà-ðàñïðåäåëåíèå                                                                                                                           1.44
ãèïîòåçà íóëåâàÿ è ãèïîòåçà àëüòåðíàòèâíàÿ                                                                                                                           2.66
ãèïîòåçà ïðîñòàÿ                                                                                                                           2.67
ãèïîòåçà ñëîæíàÿ                                                                                                                           2.68
ãèñòîãðàììà                                                                                                                           2.17
ãðàíèöà äîâåðèòåëüíàÿ                                                                                                                           2.60
ãðàíèöû êëàññà                                                                                                                           2.8
ãðàíèöû òîëåðàíòíûå                                                                                                                           2.62
äåëåíèå ïðîáû                                                                                                                           4.11
äèàãðàììà ðàçáðîñà                                                                                                                           2.21
äèàãðàììà ðàññåÿíèÿ                                                                                                                           2.21
äèàãðàììà ñòîëáèêîâàÿ                                                                                                                           2.18
äèñïåðñèÿ âûáîðî÷íàÿ                                                                                                                           2.33
äèñïåðñèÿ (ñëó÷àéíîé âåëè÷èíû)                                                                                                                           1.22
äîëÿ âûáîðî÷íàÿ                                                                                                                           4.24
åäèíèöà                                                                                                                           2.1
åäèíèöà âûáîðî÷íàÿ                                                                                                                           4.1
çíà÷åíèå (âåëè÷èíû) èñòèííîå                                                                                                                           3.2
çíà÷åíèå (âåëè÷èíû) äåéñòâèòåëüíîå                                                                                                                           3.3
çíà÷åíèå êðèòè÷åñêîå                                                                                                                           2.72
çíà÷åíèå íàáëþäàåìîå                                                                                                                           2.6, 3.6
çíà÷åíèå íîðìàëüíîå ïðèíÿòîå                                                                                                                           3.4
çíà÷åíèå îöåíêè                                                                                                                           2.51
èíòåðâàë äâóñòîðîííèé äîâåðèòåëüíûé                                                                                                                           2.57
èíòåðâàë êëàññà                                                                                                                           2.10
èíòåðâàë îäíîñòîðîííèé äîâåðèòåëüíûé                                                                                                                           2.58
èíòåðâàë òîëåðàíòíûé                                                                                                                           2.61
êâàíòèëü (ñëó÷àéíîé âåëè÷èíû)                                                                                                                           1.14
êâàðòèëü                                                                                                                           1.16
êëàññ                                                                                                                           2.7
êîâàðèàöèÿ                                                                                                                           1.32
êîâàðèàöèÿ âûáîðî÷íàÿ                                                                                                                           2.40
êîððåëÿöèÿ                                                                                                                           1.13
êîýôôèöèåíò âàðèàöèè âûáîðî÷íûé                                                                                                                           2.35
êîýôôèöèåíò âàðèàöèè (ñëó÷àéíîé âåëè÷èíû)                                                                                                                           1.24
êîýôôèöèåíò êîððåëÿöèè                                                                                                                           1.33
êîýôôèöèåíò êîððåëÿöèè âûáîðî÷íûé                                                                                                                           2.41
êîýôôèöèåíò ðåãðåññèè âûáîðî÷íûé                                                                                                                           2.44
êðèâàÿ ìîùíîñòè (êðèòåðèÿ)                                                                                                                           2.81
êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè                                                                                                                           2.83
êðèâàÿ ÎÕ                                                                                                                           2.83
êðèâàÿ ðåãðåññèè (Y ïî X)                                                                                                                           1.34
êðèâàÿ ðåãðåññèè (Y ïî Õ äëÿ âûáîðêè)                                                                                                                           2.42
êðèòåðèé äâóñòîðîííèé                                                                                                                           2.74
êðèòåðèé îäíîñòîðîííèé                                                                                                                           2.73
êðèòåðèé ñâîáîäíûé îò ðàñïðåäåëåíèÿ                                                                                                                           2.69
êðèòåðèé ñîãëàñèÿ ðàñïðåäåëåíèÿ                                                                                                                           2.63
êðèòåðèé ñòàòèñòè÷åñêèé                                                                                                                           2.65
êðèòåðèé Ñòüþäåíòà                                                                                                                           2.87
êðèòåðèé Ôèøåðà                                                                                                                           2.88
ìåäèàíà                                                                                                                           1.15
ìåäèàíà âûáîðî÷íàÿ                                                                                                                           2.28
ìîäà                                                                                                                           1.17
ìîìåíò êîððåëÿöèîííûé                                                                                                                           1.32
ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî
òî÷êè (à, b) ñîâìåñòíûé                                                                                                                           1.30
ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé öåíòðàëüíûé                                                                                                                           1.31
ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé
öåíòðàëüíûé âûáîðî÷íûé                                                                                                                           2.39
ìîìåíò ïîðÿäêà q îòíîñèòåëüíî a                                                                                                                           1.27
ìîìåíò ïîðÿäêà q îòíîñèòåëüíî íà÷àëà
îòñ÷åòà                                                                                                                           1.26
ìîìåíò ïîðÿäêà q îòíîñèòåëüíî íà÷àëà
îòñ÷åòà âûáîðî÷íûé                                                                                                                           2.36
ìîìåíò ïîðÿäêà q öåíòðàëüíûé                                                                                                                           1.28
ìîìåíò ïîðÿäêà q öåíòðàëüíûé âûáîðî÷íûé                                                                                                                           2.37
ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî
íà÷àëà îòñ÷åòà ñîâìåñòíûé                                                                                                                           1.29
ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî
íà÷àëà îòñ÷åòà ñîâìåñòíûé âûáîðî÷íûé                                                                                                                           2.38
ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé
öåíòðàëüíûé                                                                                                                           1.31
ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé öåíòðàëüíûé
âûáîðî÷íûé                                                                                                                           2.39
ìîùíîñòü êðèòåðèÿ                                                                                                                           2.79
íåçàâèñèìîñòü (ñëó÷àéíûõ âåëè÷èí)                                                                                                                           1.11
íåîïðåäåëåííîñòü (ðåçóëüòàòà ïðîâåðêè)                                                                                                                           3.25
îáëàñòü êðèòè÷åñêàÿ                                                                                                                           2.71
îáðàçåö (äëÿ èñïûòàíèé)                                                                                                                           4.26
îáúåêò                                                                                                                           2.1
îáúåì âûáîðêè                                                                                                                           4.3
îæèäàíèå (ñëó÷àéíîé âåëè÷èíû) ìàòåìàòè÷åñêîå                                                                                                                           1.18
îæèäàíèå ìàðãèíàëüíîå ìàòåìàòè÷åñêîå                                                                                                                           1.19
îæèäàíèå óñëîâíîå ìàòåìàòè÷åñêîå                                                                                                                           1.20
îòáîð âûáîðêè                                                                                                                           4.4
îòáîð ïðîá                                                                                                                           4.27
îòáîð êëàñòåðíûé                                                                                                                           4.18
îòáîð ìåòîäîì ãðóïïèðîâêè                                                                                                                           4.18
îòáîð ìíîãîñòàäèéíûé                                                                                                                           4.19
îòáîð êëàñòåðíûé ìíîãîñòàäèéíûé                                                                                                                           4.20
îòáîð ïåðèîäè÷åñêèé ñèñòåìàòè÷åñêèé                                                                                                                           4.16
îòáîð ñèñòåìàòè÷åñêèé                                                                                                                           4.15
îòêëîíåíèå (ñëó÷àéíîé âåëè÷èíû) ñòàíäàðòíîå                                                                                                                           1.23
îòêëîíåíèå âîñïðîèçâîäèìîñòè ñòàíäàðòíîå                                                                                                                           3.22
îòêëîíåíèå ïîâòîðÿåìîñòè ñòàíäàðòíîå                                                                                                                           3.17
îòêëîíåíèå (âûáîðêè) ñðåäíåå                                                                                                                           2.32
îòêëîíåíèå ñòàíäàðòíîå âûáîðî÷íîå                                                                                                                           2.34
îòêëîíåíèå ñòàíäàðòíîå îòíîñèòåëüíîå                                                            2.35
îöåíèâàíèå (ïàðàìåòðà)                                                                                                                           2.49
îöåíêà                                                                                                                           2.50
îöåíêà íåñìåùåííàÿ                                                                                                                           2.55
îøèáêà âòîðîãî ðîäà                                                                                                                           2.77
îøèáêà ïåðâîãî ðîäà                                                                                                                           2.75
îøèáêà ðåçóëüòàòà (ïðîâåðêè)                                                                                                                           3.8
îøèáêà ðåçóëüòàòà (ïðîâåðêè) ñèñòåìàòè÷åñêàÿ                                                                                                                           3.10
îøèáêà ðåçóëüòàòà (ïðîâåðêè) ñëó÷àéíàÿ                                                                                                                           3.9
îøèáêà ñðåäíåêâàäðàòè÷íàÿ                                                                                                                           2.56
îøèáêà ñòàíäàðòíàÿ                                                                                                                           2.56
ïàðàìåòð                                                                                                                           1.12
ïåðèîä îòáîðà (âûáîðêè)                                                                                                                           4.17
ïëîòíîñòü ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé)                                                                                                                           1.5
ïîâåðõíîñòü ðåãðåññèè (Z ïî Õ è Y)                                                                                                                           1.35
ïîâåðõíîñòü ðåãðåññèè (Z ïî X è Y äëÿ âûáîðêè)                                                                                                                           2.43
ïîâòîðåíèå                                                                                                                           2.89
ïîâòîðÿåìîñòü (ðåçóëüòàòà ïðîâåðêè)                                                                                                                           3.15
ïîãðåøíîñòü âûáîðî÷íîãî ìåòîäà                                                                                                                           2.53
ïîãðåøíîñòü îöåíêè                                                                                                                           2.52
ïîäâûáîðêà                                                                                                                           4.10
ïîäãîòîâêà ïðîáû                                                                                                                           4.30
ïîäñîâîêóïíîñòü                                                                                                                           2.5
ïîëèãîí êóìóëÿòèâíûõ ÷àñòîò                                                                                                                           2.19
ïðàâèëüíîñòü (ðåçóëüòàòà ïðîâåðêè)                                                                                                                           3.12
ïðåäåë âîñïðîèçâîäèìîñòè                                                                                                                           3.23
ïðåäåë ïîâòîðÿåìîñòè                                                                                                                           3.18
ïðåäåëû êëàññà                                                                                                                           2.8
ïðåöèçèîííîñòü (ðåçóëüòàòà ïðîâåðêè)                                                                                                                           3.14
ïðèçíàê                                                                                                                           2.2
ïðè÷èíû ñëó÷àéíûå                                                                                                                           2.92
ïðîáà                                                                                                                           4.2
ïðîáà âòîðè÷íàÿ                                                                                                                           4.22
ïðîáà äëÿ àíàëèçà                                                                                                                           4.32
ïðîáà äóáëèðóþùàÿ                                                                                                                           4.12
ïðîáà ëàáîðàòîðíàÿ                                                                                                                           4.31
ïðîáà ìãíîâåííàÿ                                                                                                                           4 25
ïðîáà ïåðâè÷íàÿ                                                                                                                           4.21
ïðîáà îáúåäèíåííàÿ                                                                                                                           4.29
ïðîáà ñóììàðíàÿ                                                                                                                           4.28
ïðîáà ðàññëîåííàÿ                                                                                                                           4.14
ïðîâåäåíèå ýêñïåðèìåíòà ïîâòîðíîå                                                                                                                           2.90
ïðîöåäóðà âûáîðî÷íîãî êîíòðîëÿ                                                                                                                           4.5
ðàçìàõ (âûáîðêè)                                                                                                                           2.30
ðàçìàõ (âûáîðîê) ñðåäíèé                                                                                                                           2.31
ðàçíîñòü âîñïðîèçâîäèìîñòè êðèòè÷åñêàÿ                                                                                                                           3.24
ðàçíîñòü ïîâòîðÿåìîñòè êðèòè÷åñêàÿ                                                                                                                           3.19
ðàìêè îòáîðà                                                                                                                           2.4
ðàíäîìèçàöèÿ                                                                                                                           2.91
ðàñïðåäåëåíèå c2                                                                                                                           1.39
ðàñïðåäåëåíèå áèíîìèàëüíîå                                                                                                                           1.49
ðàñïðåäåëåíèå Âåéáóëëà                                                                                                                           1.48
ðàñïðåäåëåíèå (âåðîÿòíîñòåé) ìàðãèíàëüíîå                                                                                                                           1.9
ðàñïðåäåëåíèå (âåðîÿòíîñòåé)                                                                                                                           1.3
ðàñïðåäåëåíèå (âåðîÿòíîñòåé) óñëîâíîå                                                                                                                           1.10
ðàñïðåäåëåíèå ãèïåðãåîìåòðè÷åñêîå                                                                                                                           1.52
ðàñïðåäåëåíèå Ãóìáåëÿ                                                                                                                           1.46
ðàñïðåäåëåíèå äâóìåðíîå íîðìàëüíîå                                                                                                                           1.53
ðàñïðåäåëåíèå äâóìåðíîå Ëàïëàñà- Ãàóññà                                                                                                                           1.53
ðàñïðåäåëåíèå äâóìåðíîå Ëàïëàñà- Ãàóññà
íîðìèðîâàííîå                                                                                                                           1.54
ðàñïðåäåëåíèå Ëàïëàñà-Ãàóññà                                                                                                                           1.37
ðàñïðåäåëåíèå Ëàïëàñà- Ãàóññà ñòàíäàðòíîå                                                                                                                           1.38
ðàñïðåäåëåíèå ëîãàðèôìè÷åñêè íîðìàëüíîå                                                                                                                           1.42
ðàñïðåäåëåíèå ìíîãîìåðíîé ñëó÷àéíîé âåëè÷èíû                                                                                                                           1.55
ðàñïðåäåëåíèå ìóëüòèíîìèàëüíîå                                                                                                                           1.55
ðàñïðåäåëåíèå íîðìàëüíîå                                                                                                                           1.37
ðàñïðåäåëåíèå ñòàíäàðòèçîâàííîå äâóìåðíîå
íîðìàëüíîå                                                                                                                           1.54
ðàñïðåäåëåíèå ñòàíäàðòíîå íîðìàëüíîå                                                                                                                           1.38
ðàñïðåäåëåíèå Ñòüþäåíòà                                                                                                                           1.40
ðàñïðåäåëåíèå îòðèöàòåëüíîå áèíîìèàëüíîå                                                                                                                           1.50
ðàñïðåäåëåíèå ïðÿìîóãîëüíîå                                                                                                                           1.36
ðàñïðåäåëåíèå Ïóàññîíà                                                                                                                           1.51
ðàñïðåäåëåíèå ðàâíîìåðíîå                                                                                                                           1.36
ðàñïðåäåëåíèå Ôðåøý                                                                                                                           1.47
ðàñïðåäåëåíèå ÷àñòîò                                                                                                                           2.15
ðàñïðåäåëåíèå ÷àñòîò äâóìåðíîå                                                                                                                           2.20
ðàñïðåäåëåíèå ÷àñòîò ìàðãèíàëüíîå                                                                                                                            2.24
ðàñïðåäåëåíèå ÷àñòîò ìíîãîìåðíîå                                                                                                                           2.23
ðàñïðåäåëåíèå ÷àñòîò îäíîìåðíîå                                                                                                                           2.16
ðàñïðåäåëåíèå ÷àñòîò óñëîâíîå                                                                                                                           2.25
ðàñïðåäåëåíèå ýêñïîíåíöèàëüíîå                                                                                                                           1.43
ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà I                                                                                                                           1.46
ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà II                                                                                                                           1.47
ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà III                                                                                                                           1.48
ðàññëîåíèå                                                                                                                           4.13
ðåçóëüòàò (íà âûáðàííîì óðîâíå çíà÷èìîñòè a) çíà÷èìûé                                                                                                                           2.84
ðåçóëüòàò ïðîâåðêè                                                                                                                           3.7
ðåïëèêà                                                                                                                           2.90
ñåðåäèíà êëàññà                                                                                                                           2.9
ñåðåäèíà ðàçìàõà (âûáîðêè)                                                                                                                           2.29
ñåðèÿ                                                                                                                           2.48
ñìåùåíèå (ðåçóëüòàòà ïðîâåðêè)                                                                                                                           3.13
ñìåùåíèå îöåíêè                                                                                                                           2.54
ñîâîêóïíîñòü (ãåíåðàëüíàÿ)                                                                                                                           2.3
ñðåäíåå àðèôìåòè÷åñêîå                                                                                                                           2.26
ñðåäíåå àðèôìåòè÷åñêîå âçâåøåííîå                                                                                                                           2.27
ñòàòèñòèêà                                                                                                                           2.45
ñòàòèñòèêà ïîðÿäêîâàÿ                                                                                                                           2.46
ñòåïåíü ñâîáîäû                                                                                                                           2.85
ñõîäèìîñòü                                                                                                                           3.15
òàáëèöà ñîïðÿæåííîñòè äâóõ ïðèçíàêîâ                                                                                                                           2.22
òî÷íîñòü (ðåçóëüòàòà ïðîâåðêè)                                                                                                                           3.11
òðåíä                                                                                                                           2.47
óðîâåíü äîâåðèÿ                                                                                                                           2.59
óðîâåíü çíà÷èìîñòè (êðèòåðèÿ)                                                                                                                           2.70
óñëîâèÿ âîñïðîèçâîäèìîñòè                                                                                                                           3.21
óñëîâèÿ ïîâòîðÿåìîñòè                                                                                                                           3.16
ôóíêöèÿ ìîùíîñòè êðèòåðèÿ                                                                                                                           2.80
ôóíêöèÿ ðàñïðåäåëåíèÿ                                                                                                                           1.4
ôóíêöèÿ ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé) ìàññ                                                                                                                           1.6
ôóíêöèÿ ðàñïðåäåëåíèÿ äâóìåðíàÿ                                                                                                                           1.7
ôóíêöèÿ ðàñïðåäåëåíèÿ ìíîãîìåðíàÿ                                                                                                                           1.8
õàðàêòåðèñòèêà îïåðàòèâíàÿ                                                                                                                           2.82
÷àñòîòà                                                                                                                           2.11
÷àñòîòà êóìóëÿòèâíàÿ îòíîñèòåëüíàÿ                                                                                                                           2.14
÷àñòîòà íàêîïëåííàÿ êóìóëÿòèâíàÿ                                                                                                                           2.12
÷àñòîòà îòíîñèòåëüíàÿ                                                                                                                           2.13
c2-distribution                                                                                                                           1.39
c2-test                                                                                                                           2.86
accepted reference value                                                                                                                           3.4
accuracy                                                                                                                           3.11
aggregated sample                                                                                                                           4.28
alternative hypothesis                                                                                                                           2.66
analysis sample                                                                                                                           4.32
arithmetic mean                                                                                                                           2.26
arithmetic weighted mean                                                                                                                           2.27
average                                                                                                                           2.26
average range                                                                                                                           2.31
bar chart                                                                                                                           2.18
bar diagram                                                                                                                           2.18
beta distribution                                                                                                                           1.45
bias                                                                                                                           3.13
bias of estimator                                                                                                                           2.54
binomial distribution                                                                                                                           1.49
bivariate distribution function                                                                                                                           1.7
bivariate frequency distribution                                                                                                                           2.20
bivariate Laplace - Gauss distribution                                                                                                                           1.53
bivariate normal distribution                                                                                                                           1.53
bulk sampling                                                                                                                           4.27
cell                                                                                                                           2.7
central moment of order q                                                                                                                           1.28
central moment of order q, sample                                                                                                                           2.37
centered random variable                                                                                                                           1.21
chance causes                                                                                                                           2.92
characteristic                                                                                                                           2.2
chi-squared distribution                                                                                                                           1.39
chi-squared test                                                                                                                           2.86
class                                                                                                                           2.7
class boundaries                                                                                                                           2.8
class limits                                                                                                                           2.8
class width                                                                                                                           2.10
cluster sampling                                                                                                                           4.18
coefficient of variation                                                                                                                           1.24
coefficient of variation, sample                                                                                                                           2.35
composite hypothesis                                                                                                                           2.68
conditional expectation                                                                                                                           1.20
conditional frequency distribution                                                                                                                           2.25
conditional probability distribution                                                                                                                           1.10
confidence coefficient                                                                                                                           2.59
confidence level                                                                                                                           2.59
confidence limit                                                                                                                           2.60
contingency table                                                                                                                           2.22
conventional true value (of a quantity)                                                                                                                           3.3
correlation                                                                                                                           1.13
correlation coefficient                                                                                                                           1.33
correlation coefficient, sample                                                                                                                           2.41
covariance                                                                                                                           1.32
covariance, sample                                                                                                                           1.32
critical region                                                                                                                           2.71
critical value                                                                                                                           2.72
cumulative frequency                                                                                                                           2.12
cumulative frequency polygon                                                                                                                           2.19
cumulative relative frequency                                                                                                                           2.14
degree of freedom                                                                                                                           2.85
distribution free-test                                                                                                                           2.69
distribution function                                                                                                                           1.4
duplicate sample                                                                                                                           4.12
entity                                                                                                                           2.1
error of result                                                                                                                           3.8
error of the first kind                                                                                                                           2.75
error of the second kind                                                                                                                           2.77
estimate                                                                                                                           2.51
estimation                                                                                                                           2.49
estimator                                                                                                                           2.50
estimator error                                                                                                                           2.52
expectation                                                                                                                           1.18
expected value                                                                                                                           1.18
exponential distribution                                                                                                                           1.43
F-distribution                                                                                                                           1.41
final sample                                                                                                                           4.23
Frechet distribution                                                                                                                           1.47
frequency                                                                                                                           2.11
frequency distribution                                                                                                                           2.15
F-test                                                                                                                           2.88
gamma distribution                                                                                                                           1.44
goodness of fit of a distribution                                                                                                                           2.63
gross sample                                                                                                                           4.29
Gumbel distribution                                                                                                                           1.46
histogram                                                                                                                           2.17
hypergeometric distribution                                                                                                                           1.52
increment                                                                                                                           4.25
independence                                                                                                                           1.11
item                                                                                                                           2.1
joint central moment of orders q and s                                                                                                                           1.31
joint central moment of orders q and s, sample                                                                                                                           2.39
joint moment of orders q and s about an origin (a,
b)                                                                                                                           1.30
joint moment of orders q and s about the origin                                                                                                                           1.29
joint moment of orders q and s about the origin, sample                                                                                                                           2.38
laboratory sample                                                                                                                           4.31
Laplace - Gauss distribution                                                                                                                           1.37
log-normal distribution                                                                                                                           1.42
marginal expectation                                                                                                                           1.19
marginal frequency distribution                                                                                                                           2.24
marginal probability distribution                                                                                                                           1.9
mean                                                                                                                           1.18
mean deviation                                                                                                                           2.32
mean range                                                                                                                           2.31
measurand                                                                                                                           3.5
(measurable) quantity                                                                                                                           3.1
median                                                                                                                           1.15
median, sample                                                                                                                           2.28
mid-point of class                                                                                                                           2.9
mid-range                                                                                                                           2.29
mode                                                                                                                           1.17
moment of order q about an origin a                                                                                                                           1.27
moment of order q about the origin                                                                                                                           1.26
moment of order q about the origin, sample                                                                                                                           2.36
multinomial distribution                                                                                                                           1.55
multi-stage cluster sampling                                                                                                                           4.20
multi-stage sampling                                                                                                                           4.19
multivariate distribution function                                                                                                                           1.8
multivariate frequency distribution                                                                                                                           2.23
negative binomial distribution                                                                                                                           1.50
nested sampling                                                                                                                           4.19
normal distribution                                                                                                                           1.37
null hypothesis                                                                                                                           2.66
observed value                                                                                                                           2.6, 3.6
one-sided confidence interval                                                                                                                           2.58
one-sided test                                                                                                                           2.73
operating characteristic                                                                                                                           2.82
operating characteristic curve                                                                                                                           2.83
order statistics                                                                                                                           2.46
outliers                                                                                                                           2.64
parameter                                                                                                                           1.12
periodic systematic sampling                                                                                                                           4.16
Poisson distribution                                                                                                                           1.51
population                                                                                                                           2.3
power curve                                                                                                                           2.81
power function of a test                                                                                                                           2.80
power of a test                                                                                                                           2.79
precision                                                                                                                           3.14
primary sample                                                                                                                           4.21
probability                                                                                                                           1.1
probability density function                                                                                                                           1.5
probability distribution                                                                                                                           1.3
probability mass function                                                                                                                           1.6
quantile                                                                                                                           1.14
quantity (measurable)                                                                                                                           3.1
quartile                                                                                                                           1.16
random error of result                                                                                                                           3.9
random sample                                                                                                                           4.8
random variable                                                                                                                           1.2
randomization                                                                                                                           2.91
range                                                                                                                           2.30
rectangular distribution                                                                                                                           1.36
regression coefficient, sample                                                                                                                           2.44
regression curve                                                                                                                           1.34, 2.42
regression surface                                                                                                                           1.35, 2.43
relative frequency                                                                                                                           2.13
repeatability                                                                                                                           3.15
repeatability conditions                                                                                                                           3.16
repeatability critical difference                                                                                                                           3.19
repeatability limit                                                                                                                           3.18
repeatability standard deviation                                                                                                                           3.17
repetition                                                                                                                           2.89
replication                                                                                                                           2.90
reproducibility                                                                                                                           3.20
reproducibility conditions                                                                                                                           3.21
reproducibility critical difference                                                                                                                           3.24
reproducibility limit                                                                                                                           3.23
reproducibility standard deviation                                                                                                                           3.22
run                                                                                                                           2.48
sample                                                                                                                           4.2
sample division                                                                                                                           4.11
sample preparation                                                                                                                           4.30
sample size                                                                                                                           4.3
sampling                                                                                                                           4.4
sampling error                                                                                                                           2.53
sampling fraction                                                                                                                           4.24
sampling frame                                                                                                                           2.4
sampling interval                                                                                                                           4.17
sampling procedure                                                                                                                           4.5
sampling unit                                                                                                                           4.1
sampling with replacement                                                                                                                           4.6
sampling without replacement                                                                                                                           4.7
scatter diagram                                                                                                                           2.21
secondary sample                                                                                                                           4.22
significance level                                                                                                                           2.70
significant result (at the closen significance level a)                                                                                                                           2.84
simple hypothesis                                                                                                                           2.67
simple random sample                                                                                                                           4.9
standard deviation                                                                                                                           1.23
standard, sampling                                                                                                                           2.34
standard error                                                                                                                           2.56
standardized bivariate Laplace-Gauss distribution                                                                                                                           1.54
standardized bivariate normal distribution                                                                                                                           1.54
standardized Laplace-Gauss distribution                                                                                                                           1.38
standardized normal distribution                                                                                                                           1.38
standardized random variable                                                                                                                           1.25
statistical coverage interval                                                                                                                           2.61
statistical coverage limits                                                                                                                           2.62
statistical test                                                                                                                           2.65
statistics                                                                                                                           2.45
stratification                                                                                                                           4.13
stratified sampling                                                                                                                           4.14
Students distribution                                                                                                                           1.40
Students test                                                                                                                           2.87
subpopuiation                                                                                                                           2.5
subsample                                                                                                                           4.10
systematic error of result                                                                                                                           3.10
systematic sampling                                                                                                                           4.15
t-distribirtion                                                                                                                           1.40
t-test                                                                                                                           2.87
test piece                                                                                                                           4.26
test result                                                                                                                           3.7
test sample                                                                                                                           4.32
trend                                                                                                                           2.47
true value (of a quantity)                                                                                                                           3.2
trueness                                                                                                                           3.12
two-sided confidence interval                                                                                                                           2.57
two-sided test                                                                                                                           2.74
two-way table of frequencies                                                                                                                           2.22
type I error probability                                                                                                                           2.76
type I extreme value distribution                                                                                                                           1.46
type II error probability                                                                                                                           2.78
type II extreme value distribution                                                                                                                           1.47
type III extreme value distribution                                                                                                                           1.48
unbiased estimator                                                                                                                           2.55
uncertainty                                                                                                                           3.25
uniform distribution                                                                                                                           1.36
univariate frequency distribution                                                                                                                           2.16
variance                                                                                                                           1.22
variance, sampling                                                                                                                           2.33
variate                                                                                                                           1.2
Weibull distribution                                                                                                                           1.48
weighted average                                                                                                                           2.27
abequation d’une distribution                                                                                                                           2.63
base d’echantillonnage                                                                                                                           2.4
biais                                                                                                                           3.13
biais d’un estimateur                                                                                                                           2.54
caractere                                                                                                                           2.2
causes aleatoires                                                                                                                           2.92
centre de classe                                                                                                                           2.9
classe                                                                                                                           2.7
classe, largeur de                                                                                                                           2.10
coefficient de correlation                                                                                                                           1.33, 2.41
coefficient de regression                                                                                                                           2.44
coefficient de variation                                                                                                                           1.24, 2.35
conditions de repetabilite                                                                                                                           3.16
conditions de reproductibilite                                                                                                                           3.21
correlation                                                                                                                           1.13
courbe d’efficacite                                                                                                                           2.83
courbe de puissance                                                                                                                           2.81
courbe de regression                                                                                                                           1.34, 2.42
covariance                                                                                                                           1.32, 2.40
degre de liberte                                                                                                                           2.85
diagramme en batons                                                                                                                           2.18
difference critique de repetabilite                                                                                                                           3.19
difference critique de reproductibilite                                                                                                                           3.24
distribution d’effectif                                                                                                                           2.15
distribution d’effectif a deux variables                                                                                                                           2.20
distribution d’effectif a plusieurs variables                                                                                                                           2.23
distribution d’effectif a une variable                                                                                                                           2.16
distribution d’effectif conditionnelle                                                                                                                           2.25
distribution d’effectif marginale                                                                                                                           2.24
division d’un echantillon                                                                                                                           4.11
ecart moyen                                                                                                                           2.32
ecart-type                                                                                                                           1.23, 2.34
ecart-type de repetabilite                                                                                                                           3.17
ecart-type de reproductibilite                                                                                                                           3.22
echantillon                                                                                                                           4.2
echantillon au hasard                                                                                                                           4.8
echantillon dedouble                                                                                                                           4.12
echantillon d’ensemble                                                                                                                           4.28
echantillon final                                                                                                                           4.23
echantillon global                                                                                                                           4.29
echantillon pour analyse                                                                                                                           4.32
echantillon pour essai                                                                                                                           4.32
echantillon pour laboratoire                                                                                                                           4.31
echantillon secondaire                                                                                                                           4.22
echantillon simple au hasard                                                                                                                           4.9
echantillonnage                                                                                                                           4.4
echantillonnage a plusieurs degrees                                                                                                                           4.19
echantillonnage avec remise                                                                                                                           4.6
echantillonnage en grappe a plusieurs degrees                                                                                                                           4.20
echantillonnage en grappe                                                                                                                           4.18
echantillonnage en serie                                                                                                                           4.19
echantillonnage en vrac                                                                                                                           4.27
echantillonnage exhaustif                                                                                                                           4.7
echantillonnage non exhaustif                                                                                                                           4.6
echantillonnage primaire                                                                                                                           4.21
echantillonnage sans remise                                                                                                                           4.7
echantillonnage stratifie                                                                                                                           4.14
echantillonnage systematique                                                                                                                           4.15
echantillonnage systematique periodique                                                                                                                           4.16
effectif                                                                                                                           2.11
effectif cumule                                                                                                                           2.12
effectif d’echantillon                                                                                                                           4.3
efficacite                                                                                                                           2.82
entite                                                                                                                           2.1
eprouvette                                                                                                                           4.26
erreur aleatoire de resultat                                                                                                                           3.9
erreur d’echantillonnage                                                                                                                           2.53
erreur de premiere espece                                                                                                                           2.75
erreur de resultat                                                                                                                           3.8
erreur d’estimation                                                                                                                           2.52
erreur de seconde espece                                                                                                                           2.77
erreur systematique de resultat                                                                                                                           3.10
erreur-type                                                                                                                           2.56
esperance mathematique                                                                                                                           1.18
esperance mathematique conditionnelle                                                                                                                           1.20
esperance mathematique marginale                                                                                                                           1.19
estimateur                                                                                                                           2.50
estimateur sans biais                                                                                                                           2.55
estimation                                                                                                                           2.49
estimation (resultat)                                                                                                                           2.51
etendue                                                                                                                           2.30
etendue moyenne                                                                                                                           2.31
exactitude                                                                                                                           3.11
fidelite                                                                                                                           3.14
fonction d’efficacite d’un test                                                                                                                           2.82
fonction de densite de probabilite                                                                                                                           1.5
fonction de masse                                                                                                                           1.6
fonction de puissance d’un test                                                                                                                           2.80
fonction de repartition                                                                                                                           1.4
fonction de repartition a deux variables                                                                                                                           1.7
fonction de repartition a plusieurs variables                                                                                                                           1.8
fraction de sondage                                                                                                                           4.24
frequence                                                                                                                           2.13
frequence cumulee                                                                                                                           2.14
frontieres de classe                                                                                                                           2.8
grandeur (mesurable)                                                                                                                           3.1
histogramme                                                                                                                           2.17
hypergeometrique, loi                                                                                                                           1.52
hypothese alternative                                                                                                                           2.66
hypothese composite                                                                                                                           2.68
hypothese nulle                                                                                                                           2.66
hypothese simple                                                                                                                           2.67
incertitude                                                                                                                           3.25
independance                                                                                                                           1.11
individu                                                                                                                           2.1
intervalle d’echantillonnage                                                                                                                           4.17
intervalle de confiance bilateral                                                                                                                           2.57
intervalle de confiance unilateral                                                                                                                           2.58
intervalle statistique de dispersion                                                                                                                           2.61
justesse                                                                                                                           3.12
Laplace - Gauss, loi de                                                                                                                           1.37
Laplace - Gauss a deux variables, loi de                                                                                                                           1.53
Laplace - Gauss reduite, loi de                                                                                                                           1.38
Laplace - Gauss reduite a deux variables, loi de                                                                                                                           1.54
largeur de classe                                                                                                                           2.10
limite de confiance                                                                                                                           2.60
limite de repetabilite                                                                                                                           3.18
limite de reproductibilite                                                                                                                           3.23
limites de classe                                                                                                                           2.8
limites statistiques de dispersion                                                                                                                           2.62
loi beta                                                                                                                           1.45
loi binomiale                                                                                                                           1.49
loi binomiale negative                                                                                                                           1.50
loi de chi carre                                                                                                                           1.39
loi de F                                                                                                                           1.41
loi de Frechet                                                                                                                           1.47
loi de Gumbel                                                                                                                           1.46
loi de c2                                                                                                                           1.39
loi de Laplace - Gauss                                                                                                                           1.37
loi de Laplace - Gauss a deux variables                                                                                                                           1.53
loi de Laplace - Gauss reduite                                                                                                                           1.38
loi de Laplace - Gauss reduite a deux variables                                                                                                                           1.54
loi de Poisson                                                                                                                           1.51
loi de probabilite conditionnelle                                                                                                                           1.10
loi de probabilite                                                                                                                           1.3
loi de probabilite marginale                                                                                                                           1.9
loi des valeurs extremes de type I                                                                                                                           1.46
loi des valeurs extremes de type II                                                                                                                           1.47
loi des valeurs extremes de type III                                                                                                                           1.48
loi de Student                                                                                                                           1.40
loi de t                                                                                                                           1.40
loi de Weibull                                                                                                                           1.48
loi exponentielle                                                                                                                           1.43
loi gamma                                                                                                                           1.44
loi hypergeometrique                                                                                                                           1.52
loi log-normale                                                                                                                           1.42
loi multinomiale                                                                                                                           1.55
loi normale                                                                                                                           1.37
loi normale a deux variables                                                                                                                           1.53
loi normale reduite                                                                                                                           1.38
loi normale reduite a deux variables                                                                                                                           1.54
loi rectangulaire                                                                                                                           1.36
loi uniforme                                                                                                                           1.36
mediane                                                                                                                           1.15, 2.28
mesurande                                                                                                                           3.5
milieu de 1etendue                                                                                                                           2.29
mode                                                                                                                           1.17
moment centre d’ordre q                                                                                                                           1.28, 2.37
moment centre d’ordres q et s                                                                                                                           1.31, 2.39
moment d’ordre q par rapport a l’origine                                                                                                                           1.26, 2.36
moment d’ordres q et s a partir de l’origine                                                                                                                           1.29, 2.38
moment d’ordre q a partir d’une origine a                                                                                                                           1.27
moment d’ordres q et s a partir d’une origine (a,
b)                                                                                                                           1.30
moyenne                                                                                                                           1.18, 2.26
moyenne arithmetique                                                                                                                           2.26
moyenne arithmetique ponderee                                                                                                                           2.27
moyenne ponderee                                                                                                                           2.27
niveau de confiance                                                                                                                           2.59
niveau de signification                                                                                                                           2.70
nuage de points                                                                                                                           2.21
parametre                                                                                                                           1.12
polygone d’effectif cumule                                                                                                                           2.19
population                                                                                                                           2.3
prelevement elementaire                                                                                                                           4.25
preparation d’un echantillon                                                                                                                           4.30
procedure d’echantillonnage                                                                                                                           4.5
probabilite                                                                                                                           1.1
probabilite d’erreur de premiere espece                                                                                                                           2.76
probabilite d’erreur de seconde espece                                                                                                                           2.78
puissance d’un test                                                                                                                           2.79
quantile                                                                                                                           1.14
quartile                                                                                                                           1.16
randomisation                                                                                                                           2.91
region critique                                                                                                                           2.71
repetabilite                                                                                                                           3.15
repetition                                                                                                                           2.89
replique                                                                                                                           2.90
reproductibilite                                                                                                                           3.20
resultat dessai                                                                                                                           3.7
resultat significatif (au niveau de signification a choisi)                                                                                                                           2.84
sous-echantillon                                                                                                                           4.10
sous-population                                                                                                                           2.5
statistique                                                                                                                           2.45
statistique d’ordre                                                                                                                           2.46
stratification                                                                                                                           4.13
suite                                                                                                                           2.48
surface de regression                                                                                                                           1.35, 2.43
table d’effectif a double entree                                                                                                                           2.22
tableau de contingence                                                                                                                           2.22
taux d’echantillonnage                                                                                                                           4.24
tendance                                                                                                                           2.47
test bilateral                                                                                                                           2.74
test de chi carre                                                                                                                           2.86
test de Student                                                                                                                           2.87
test F                                                                                                                           2.88
test c2                                                                                                                           2.86
test non parametrique                                                                                                                           2.69
test statistique                                                                                                                           2.65
test t                                                                                                                           2.87
test unilateral                                                                                                                           2.73
unite d’echantillonnage                                                                                                                           4.1
valeur conventionnellement vraie                                                                                                                           3.3
valeur critique                                                                                                                           2.72
valeur de reference acceptee                                                                                                                           3.4
valeur esperee                                                                                                                           1.18
valeur observee                                                                                                                           2.6, 3.6
valeur vraie (d’une grandeur)                                                                                                                           3.2
valeurs aberrantes                                                                                                                           2.64
valeurs extremes de type I, loi de                                                                                                                           1.46
valeurs extremes de type II, loi de                                                                                                                           1.47
valeurs extremes de type III, loi de                                                                                                                           1.48
validite de l’ajustement                                                                                                                           2.63
variable aleatoire                                                                                                                           1.2
variable aleatoire centree                                                                                                                           1.21
variable aleatoire centree reduite                                                                                                                           1.25
variance                                                                                                                           2.33
variance                                                                                                                           1.22
(ñïðàâî÷íîå)
ÁÈÁËÈÎÃÐÀÔÈß
[1] Ìåæäóíàðîäíûé ñëîâàðü îñíîâíûõ è îáùèõ
òåðìèíîâ ìåòðîëîãèè. - ISO/IEC/OIML/BIPM. - Æåíåâà, 1984.
[2] ÌÈ 2247-93 Ðåêîìåíäàöèÿ. Ãîñóäàðñòâåííàÿ
ñèñòåìà îáåñïå÷åíèÿ åäèíñòâà èçìåðåíèé. Ìåòðîëîãèÿ. Îñíîâíûå òåðìèíû è
îïðåäåëåíèÿ. - Ñ.-Ïá.: ÂÍÈÈÌ èì. Ä. È. Ìåíäåëååâà, 1994.
Êëþ÷åâûå ñëîâà: òåîðèÿ âåðîÿòíîñòåé, ðàñïðåäåëåíèå
ñëó÷àéíîé âåëè÷èíû, ñòàòèñòèêà, ñëó÷àéíàÿ âûáîðêà, ñðåäíåå, äèñïåðñèÿ,
òî÷íîñòü, ïðàâèëüíîñòü, ïðåöèçèîííîñòü